

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistribution on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution 23-dependence Matching Range of applicability Dynamic fermions Gluon PDFs

Pseudo-PDFs and extraction of PDFs from lattice A.V. Radyushkin (ODU/Jlab)

SBS Collaboration Meeting July 18, 2023

Supported by JSA, and by U.S. DOE Grant

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hadrons and Partons

PseudoPDFs

Parton Densities

Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Experimentally, we work with hadrons
- Theoretically, we works with quarks

Can be described in coordinate or momentum space

$$\langle p|\phi(0)\phi(z)|p\rangle \equiv M(z,p) = \frac{1}{\pi^2}\int d^4k \, e^{-ikz}\,\chi(k,p)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Concept of PDFs does not rely on spin complications

Light-cone PDFs

PseudoPDFs

Parton Densities Light-cone PDFs

Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution $\approx \frac{2}{3}$ -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- In momentum representation: PDF f(x) gives probability that parton carries fraction xp^+ of hadron momentum component p^+
- In coordinate representation: PDF f(x) is given by Fourier transform of matrix element M(z, p)on the light cone $z^2 = 0$
- By Lorentz invariance, M(z, p) is a function of (zp) and z²,
 i.e. (zp) only when z² = 0
- loffe time ν : taking $z = z^-$ we have $(zp) = p^+ z^- \equiv -\nu$

$$f(x) = \frac{p^+}{2\pi} \int_{-\infty}^{\infty} dz^- e^{ixp^+z^-} M(z^-, p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \, \mathcal{I}(\nu)$$

- Inffe-time distribution $\mathcal{I}(\nu)$
- Observation: v-dependence governs x-dependence

Pseudodistributions

PseudoPDFs

Parton Densities Light-cone PDFs

Pseudodistribution: on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Lattice is Euclidean: no lightcone separations
- Take z off the light cone: $z^2 < 0$
- By Lorentz invariance $M(z,p) = \mathcal{M}(-(pz), -z^2)$
- Ioffe time $\nu = -(pz)$
- $\mathcal{M}(\nu, -z^2)$: pseudo-ITD
- Pseudo \equiv off the light cone, $z^2 \neq 0$
- Using Schwinger's α -representation, it is possible to show that, for any contributing Feynman diagram, for arbitrary z^2 and arbitrary p^2

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, \mathcal{P}(x, -z^2)$$

- $\mathcal{P}(x, -z^2) =$ pseudo-PDF, or PDF off the light cone
- $e^{ix\nu} = e^{-ix(pz)}$: decomposition over plane waves with momentum k = xp
- "Canonical" limits $-1 \le x \le 1$
- Negative x correspond to anti-particles
- Note: x is Lorentz invariant: same "on" and "off" LC

-

Pseudodistributions on the lattice

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice

Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- On the lattice: cannot take "z" on the light cone Need to take it off the light cone!
- Take $z = \{0, 0, 0, z_3\}$ (X. Ji (2013), quasi-PDF approach, $p_3 \rightarrow \infty$)
- Pseudo-PDF approach is based on key observation: It does not matter if ν was obtained as $-(p_+z_-)$ or as p_3z_3 : the function $\mathcal{M}(\nu, -z^2)$ is the same!
- For $z = z_3$, we have $\nu = p_3 z_3$ and $-z^2 = z_3^2$
- Analogy with DIS structure functions $W(\omega, Q^2)$
- $\omega = 1/x$ and
- 1/Q characterizes "probing distance"
- In pseudo-PDFs, z_3 is the "probing distance" literally
- Important to realize: dependence of M(z, p) on z comes (1) through dependence on (pz) and (2) remaining dependence on z for a fixed (pz)
- Pseudo-PDF strategy: map lattice data on $M(z_3, p)$ in terms of ν and z_3^2 and extrapolate $\mathcal{M}(\nu, z_3^2)$ to $z_3^2 = 0$
- Need to understand various types of z²-dependence of M(v, z₃²)

Link-related z_3^2 -dependence

PseudoPDFs

- Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization
- Rest-frame den Higher twists Lattice & pPDF:

Evolution in lattice data

Evolution $z\frac{1}{3}$ -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Specific source of z²-dependence in QCD: gauge link Ê(0, z; A) = P exp{ig ∫₀^z A^µdx_µ}
- It comes together with ultraviolet divergences: linear $\sim z_3/a$ and logarithmic $\ln(z_3^2/a^2)$, where $a \sim$ UV cut-off, e.g. lattice spacing a_L
- At one loop, UV terms have been calculated in lattice perturbation theory (Ji et al., 2016)
- Result close to that obtained using Polyakov regularization $1/z^2 \rightarrow 1/(z^2 a^2)$ for gluon propagator in coordinate space, with $a = a_L/\pi$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[2 \frac{|z_3|}{a} \tan^{-1} \left(\frac{|z_3|}{a} \right) - \ln \left(1 + \frac{z_3^2}{a^2} \right) \right]$$

- 1-loop result exponentiates in higher orders, producing ~ e^{-2α_sz₃/3a} factor for large z₃
- Vertex corrections produce extra $\frac{\alpha_s}{2\pi}\,C_F\ln\left(1+z_3^2/a^2\right)$ term exponentiating in higher orders

Renormalization

PseudoPDFs

- Parton Densities Light-cone PDFs Pseudodistributio on the lattice
- Renormalization
- Rest-frame densi Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Link-related UV divergences have the same structure as in HQET
- They are multiplicatively renormalizable (Qiu et al., Ji et al., Green et al. 2017)
- UV regulator a appears only in the combination z_3/a
- UV-sensitive terms form a factor $Z(z_3^2/a^2)$
- This factor is an artifact of having a non-lightlike z: Z = 1 on the light cone
- It has nothing to do with the usual PDFs
- We should build modified function $Z^{-1}(z_3^2/a^2)\mathcal{M}(\nu, z_3^2; a)$
- To do this, one should know the $Z(z_3^2/a^2)$ factor
- Easier way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu, z_3^2) \equiv \frac{\mathcal{M}(\nu, z_3^2)}{\mathcal{M}(0, z_3^2)} = \lim_{a \to 0} \frac{\mathcal{M}(\nu, z_3^2; a)}{\mathcal{M}(0, z_3^2; a)}$$

• $Z(z_3^2/a^2)$ factors cancel, and $\mathfrak{M}(\nu, z_3^2)$ has finite $a \to 0$ limit

Rest-frame density and Z factor

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists

Evolution in lattice data

Evolution 23-dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Exploratory study in quenched approximation (Orginos et al. 2017), is still the most precise pPDF calculation
- Allows to study basic aspects of hadron dynamics on the lattice
- Rest-frame density $\mathcal{M}(0, z_3^2)$ is produced by data at $p_3 = 0$

・ コット (雪) (小田) (コット 日)

- M(0, z₃²) serves as the UV renormalization factor
- Red line is exponential of 1-loop result for link self-energy and vertex corrections with $\alpha_s = 0.19$
- Very strong effect from $Z(z_3^2) \sim e^{-c|z_3|/a}$

Higher-twist effects

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the latice Link self-energy Renormalization Rest-frame density Higher twists

Evolution in lattice data

Evolution 23-dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- $\bullet~$ From phenomenology: $f(x,k_{\perp})\sim e^{-k_{\perp}^2/\Lambda^2}f(x),$ with $\Lambda\sim 300~{\rm MeV}$
 - Reflects finite hadron size
- Translates into $\mathcal{P}(x, z_3^2) \sim e^{-z_3^2 \Lambda^2/4} f(x)$ for pPDF
- Translates into $\mathcal{M}(\nu, z_3^2) \sim e^{-z_3^2 \Lambda^2/4} I(\nu)$ for pITD

- Small correction compared to $Z(z_3^2)$
- Also: cancels in the $\mathcal{M}(\nu,z_3^2)/\mathcal{M}(0,z_3^2)$ ratio
- If $\mathcal{M}(\nu, z_3^2) \sim e^{-z_3^2 \Lambda^2/4} I(\nu)$ is not perfect, some residual HT terms $\sim z_3^2 \lambda^2$ may remain, with $\lambda \lesssim 100 \text{ MeV}$
- Strategy: fit residual HT from data

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pseudo-PDF strategy in action

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs

- Exploratory lattice study of reduced pseudo-ITD $\mathfrak{M}(\nu, z_3^2)$ for the valence $u_n d_n$ parton distribution in the nucleon [Orginos et al. 2017]
- Lattice QCD calculations in quenched approximation
- $32^3 \times 64$ lattices, lattice spacing a = 0.093 fm
- Pion mass 601(1) MeV and nucleon mass 1411(4) MeV
- Six lattice momenta $p_i (2\pi/L)$, with 2.5 GeV maximal momentum
- Relation between PDF and ITD involves $e^{ix\nu} = \cos x\nu + i \sin x\nu$

$$\mathcal{I}(\nu) = \int_{-\infty}^{\infty} d\nu \, e^{ix\nu} \, f(x)$$

• Real part of ITD $\mathcal{I}(\nu)$ corresponds to cosine Fourier transform of $q_v(x) = u_v(x) - d_v(x)$

$$\mathcal{R}(\nu) \equiv \operatorname{Re} \mathcal{I}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$

On the lattice, we extract the reduced pseudo-ITD

$$\mathfrak{M}(\nu, z_3^2) \equiv \frac{\mathcal{M}(\nu, z_3^2)}{\mathcal{M}(0, z_3^2)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reduced loffe-time distributions

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

- Left: Real part of the ratio $\mathcal{M}(Pz_3, z_3^2)/\mathcal{M}(0, z_3^2)$ as a function of z_3
- Taken at six values of P ⇒ curves have Gaussian-like shape
- $\Rightarrow Z(z_3^2)$ link factor cancels in the ratio

- Right: Same data, as functions of $\nu = Pz_3$ (z_3^2 varies from point to poiint)
- Data practically fall on the same universal curve
- Data show no polynomial z_3 -dependence for large z_3 though z_3^2/a^2 changes from 1 to ~ 200
- Apparently no higher-twist terms in the reduced pseudo-ITD

(日) (日) (日) (日) (日) (日) (日)

Evolution z_3^2 -dependence

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data Evolution z_3^2 -dependence Matching Range of applicabi Dynamic fermions

- Remaining z_3^2 -dependence corresponds to perturbative (DGLAP) evolution
- At one loop,

$$\mathfrak{M}^{(1)}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathfrak{M}^{(0)}(u\nu)$$

• Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_+$$

- Example of z_3 -dependence for $\nu = 12\pi/16 \approx 2.36$
- "Magic" loffe-time *pz* value:

 $12=1\times 12=2\times 6=3\times 4=4\times 3=6\times 2$

can be obtained for 5 different z's

- Shows "perturbative" $\ln(1/z_3^2)$ for small z_3
- Close to a constant for $z_3 > 6a$
- Finite-size ("HT") effect in 1-loop terms

Evolution in lattice data

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data Evolution 2 3 -dependence Matching Range of applicabil Dynamic fermions

- Points corresponding to 7a ≤ z₃ ≤ 13a values
- Some scatter for points with $\nu \gtrsim 10$
- Otherwise, practically all the points lie on a universal curve
- No z_3^2 -evolution visible in large- z_3 data
- Points in $a \le z_3 \le 6a$ region
- All points lie higher than the curve based on the z₃ ≥ 7a data
- Perturbative evolution increases real part of the pseudo-ITD when z₃ decreases
- Observed higher values of Re M for smaller-z₃ points are a consequence of evolution

Matching relations

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution 23-dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs • Matching condition between reduced pseudo-ITD and $\overline{\rm MS}$ ITD (Y. Zhao 2017, A.R. 2017)

$$\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2) \\ \times \left\{ B(w) \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\}$$

Building MS ITD

• Points in $a \le z_3 \le 4a$ region $\mu = 1/a_L \approx 2.15 \text{ GeV}$, $\alpha_s/\pi = 0.1$ • Evolved points have a rather small scatter

- The curve corresponds to the cosine transform of a normalized $\sim x^a(1-x)^b$ distribution with a = 0.35 and b = 3
- Upper curve: ITD of the CJ15 global fit PDF for $\mu = 2.15 \text{ GeV}$

Range of applicability

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z_3^2 -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

• Rule of thumb: use perturbation theory when correction is small

$$\begin{split} \mathfrak{M}(\nu, z_3^2) = & \mathcal{I}(\nu, \mu^2) - \frac{\alpha_s(\mu)}{2\pi} C_F \int_0^1 dw \, \mathcal{I}(w\nu, \mu^2) \\ & \times \left\{ B(w) \, \left[\ln \left(z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\} \end{split}$$

- $\bullet~$ Factor $e^{2\gamma_E}/4\approx 1/1.2$ relates scales in $\overline{\rm MS}$ and " z^2 " scheme
- Suggesting $\Lambda_{z^2} \approx \Lambda_{\overline{\mathrm{MS}}}/1.1$
- Next step: $\mathfrak{M}(\nu, z_3^2) = \mathcal{I}(\nu, \mu^2)$ when α_s correction is zero
- This happens when $\mu \approx 4/z_3$, because of large correction from $\ln(1-w)$
- Numerically: $\mathcal{I}(\nu, (2 \, \mathrm{GeV})^2) \approx \mathfrak{M}(\nu, (0.4 \, \mathrm{fm})^2)$
- Take $\mu = 1$ GeV: $\mathcal{I}(\nu, (1 \text{GeV})^2) \approx \mathfrak{M}(\nu, (0.8 \text{ fm})^2)$
- \Rightarrow for $a_L \sim 0.1~$ fm , PT is formally applicable till $z_3 \sim 8 a_L$
- Caution: data show deviation from $\ln(z_3^2)$ for $z_3\gtrsim 5a_L$
- Finite hadron size effects in O(α_s) terms

Dynamic fermions (Joo et al., 2019)

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution $\approx \frac{2}{3}$ -dependence Matching Range of applicability **Dynamic fermions** Gluon PDFs

Reduced ITD for two lattice spacings

- *Z*-factor Re $\mathcal{M}(0, z_3^2)$ for two lattice spacings
- Essentially universal function of z/a
- Curve is given by perturbative formula for the link Z(z/a) factor with $\alpha_s = 0.26$
- $a_L = 0.094$ data are described by PT formula with $\alpha_s = 0.24$

PseudoPDFs

PDF from dynamic fermions (2019)

Parton Densities Light-cone PDFs Pseudodistribution on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution zg-dependence Matching Range of applicability Dynamic fermions Gluon PDEs • Light-cone ITD for $\mu = 2 \text{ GeV}$ extracted from a = 0.127 fm data

PDF compared to global fits

17/24

A D > A P > A D > A D >

э

3 lattice spacings (Karpie et al. 2021)

18/24

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution 23-dependence Matching Range of applicability Dynamic fermions Gluon PDFs

• Z-factor Re $\mathcal{M}(0, z_3^2)$ is clearly a function of z_3/a_L

- α_s decreases with a_L . Check if it is $\alpha_s(1/a_L)$
- Since $\alpha_s(1/a_L) = 2\pi/[b_0 \ln(1/a_L \Lambda)]$, we plot $1/\alpha_s$ versus $\ln(1/a_L)$
- Fit corresponds to $\Lambda = 200$ MeV, and $\beta_0 = 11.4$
 - Since $\beta_0 = 11 2N_f/3$, contribution of quark loops into α_s in this simulation is not visible
 - Comparison with global fits
 - Lattice result is smaller for small x
 - Pion mass was taken 440 MeV
 - Too large to give realistic PDF for small x
 - Higher twists $\lesssim 0.15 \Lambda_{
 m QCD}^2 z_{
 m 3}^2$

PseudoPDFs

Gluon PDFs

Gluon PDFs

Correlator of two gluon fields has 4 indices

$$M_{\mu\alpha;\nu\beta}(z,p) \equiv \langle p | G_{\mu\alpha}(z) [z,0] G_{\nu\beta}(0) | p \rangle$$

• Need 6 invariant amplitudes $\mathcal{M}(\nu, z^2)$

$$\begin{split} M_{\mu\alpha;\nu\beta}(z,p) &= \left(g_{\mu\nu}p_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}p_{\nu} - g_{\alpha\nu}p_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\nu}\right)\mathcal{M}_{pp}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\nu} - g_{\alpha\nu}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\nu}\right)\mathcal{M}_{zz}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}p_{\alpha}z_{\beta} - g_{\mu\beta}p_{\alpha}z_{\nu} - g_{\alpha\nu}p_{\mu}z_{\beta} + g_{\alpha\beta}p_{\mu}z_{\nu}\right)\mathcal{M}_{pz}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}p_{\alpha}z_{\beta} - g_{\mu\beta}p_{\alpha}z_{\nu} - g_{\alpha\nu}p_{\mu}z_{\beta} + g_{\alpha\beta}p_{\mu}z_{\nu}\right)\mathcal{M}_{pz}(\nu,z^{2}) \\ &+ \left(p_{\mu}z_{\alpha} - p_{\alpha}z_{\mu}\right)\left(p_{\nu}z_{\beta} - p_{\beta}z_{\nu}\right)\mathcal{M}_{ppzz}(\nu,z^{2}) \\ &+ \left(g_{\mu\nu}g_{\alpha\beta} - g_{\mu\beta}g_{\alpha\nu}\right)\mathcal{M}_{gg}(\nu,z^{2}) \end{split}$$

• "Light-cone" gluon distribution $f_g(x)$ is defined through the convolution $g^{\alpha\beta}M_{+\alpha;\beta+}(z,p)$, with z taken in the light-cone "minus" direction, $z = z_-$:

$$g^{\alpha\beta}M_{+\alpha;\beta+}(z_{-},p) = p_{+}^{2}\int_{-1}^{1}\mathrm{d}x \, e^{ixp_{+}z_{-}} x f_{g}(x)$$

In terms of invariant amplitudes

$$g^{\alpha\beta}M_{+\alpha;\beta+}(z_{-},p) = -2p_{+}^{2}\mathcal{M}_{pp}(\nu,0)$$

Picking out twist-2 distribution

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & oPDFs

Evolution in lattice data

Evolution 23-dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs

- Strategy is to choose matrix elements M_{μα;λβ} that contain M_{pp} in their parametrization – and ideally nothing else!
- Split the "+" components onto sum of space- and time-components
- Due to antisymmetry of $G_{\rho\sigma}$ with respect to its indices, $g^{\alpha\beta}M_{+\alpha;\beta+}(z,p)$ includes summation over transverse indices i, j = 1, 2 only

$$g^{ij}M_{+i;j+} = -M_{+1;1+} - M_{+2;2+} = M_{0i;0i} + M_{3i;3i} + (M_{0i;3i} + M_{3i;0i})$$

Decomposition of these matrix elements in invariant amplitudes

$$\begin{split} M_{0i;i0} &= 2p_0^2 \mathcal{M}_{pp} + 2\mathcal{M}_{gg} \\ M_{3i;i3} &= 2p_3^2 \mathcal{M}_{pp} + 2z_3^2 \mathcal{M}_{zz} + 2z_3 p_3 \left(\mathcal{M}_{zp} + \mathcal{M}_{pz}\right) - 2\mathcal{M}_{gg} \\ M_{0i;i3} &= 2p_0 \left(p_3 \mathcal{M}_{pp} + z_3 \mathcal{M}_{pz}\right) \\ M_{3i;i0} &= 2p_0 \left(p_3 \mathcal{M}_{pp} + z_3 \mathcal{M}_{zp}\right) \end{split}$$

- All contain the M_{pp}, though with different kinematical factors
- Unfortunately, none of them is just M_{pp}
- Fortunately, $M_{ji;ij} = -2\mathcal{M}_{gg}$
- Hence, the combination

$$M_{0i;i0} + M_{ji;ij} = 2p_0^2 \mathcal{M}_{pp}$$

may be used for extraction of the twist-2 function \mathcal{M}_{pp}

Gluon PDF extraction

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z 3 -dependence Matching Range of applicabilit Dynamic fermions Gluon PDFs • Reduced loffe-time pseudo-distribution $\mathfrak{M}(\nu, z^2)$

Extracted gluon distribution (HadStruc, 2021)

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Polarized gluon distribution

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists

Evolution in lattice data

Evolution 2 3 -dependence Matching Range of applicabili Dynamic fermions Gluon PDFs

- In the polarized gluon case, tensor structures may be built from 3 vectors: z_{μ}, p_{μ} and s_{μ}
- As a result, one deals with 12 invariant amplitudes
- Combination, similar to that used in unpolarized case

 $\widetilde{M}_{0i;0i}(z,p) + \widetilde{M}_{ij;ij}(z,p) = -2p_z p_0 \widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) + 2p_0^3 z \widetilde{\mathcal{M}}_{pp}(\nu,z^2)$

The polarized gluon PDF is determined by the loffe-time distribution

$$-i\widetilde{\mathcal{I}}_p(\nu) \equiv \widetilde{\mathcal{M}}_{ps}^{(+)}(\nu) - \nu\widetilde{\mathcal{M}}_{pp}(\nu)$$

• Matrix element $\widetilde{M}_{0i;0i}(z,p) + \widetilde{M}_{ij;ij}(z,p)$ has a "slightly" different structure

$$\widetilde{\mathfrak{M}}(\nu, z^2) = \left[\widetilde{\mathcal{M}}_{sp}^{(+)}(\nu, z^2) - \nu \widetilde{\mathcal{M}}_{pp}(\nu, z^2)\right] - \frac{m_p^2}{p_z^2} \nu \widetilde{\mathcal{M}}_{pp}(\nu, z^2)$$

(日) (日) (日) (日) (日) (日) (日)

• The goal is to eliminate the $\mathcal{O}(m_p^2/p_z^2)$ contamination term and extract $\widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) - \nu \widetilde{\mathcal{M}}_{pp}(\nu,z^2)$

Extraction of polarized gluon PDF

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistributions on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z g -dependence Matching Range of applicability Dynamic fermions Gluon PDFs

Comparison with experimental fits converted into ITD (HadStruc, 2022)

p = 0.41 GeV

n = 0.82 GeV

n = 1.23 GeV

23/24

In conclusion

PseudoPDFs

Parton Densities Light-cone PDFs Pseudodistribution on the lattice Link self-energy Renormalization Rest-frame density Higher twists Lattice & pPDFs

Evolution in lattice data

Evolution z_3^2 -dependence Matching Range of applicability Dynamic fermions **Gluon PDFs**

- Psedodistribution approach allows to study hadron structure in a way similar to experimental study of DIS
- Instead of structure functions W(x, Q²), we study loffe-time distributions M(ν, z₃²)
- Ioffe time ν is Fourier-conjugate to x
- z_3 is probing scale, like 1/Q in DIS
- Detailed studies of *v* and z₃²-dependence decipher subtleties of hadron dynamics
- Existing lattice extractions of PDFs still play exploratory role
- The current goal is to check that lattice methods give reasonable results for PDFs known experimentally
- The future goal is to get the functions which are not directly accessible by experiment: a key example is given by GPDs H(x, ξ; t)