

Hadronic Form Factors

Robert J. Perry <robert.perry@adelaide.edu.au>

A.W. Thomas, A. Kızılersü, M.E. Carrillo-Serrano, R. Young, J. Zanotti

TALK OUTLINE

- \triangleright Motivation: Bridging QCD and low energy hadronic properties.
- Introduction to Form Factors
- ▶ Chiral Corrections to Baryon Electromagnetic Form Factors, arXiv:1703.01032
- ▶ Model Dependence of the Pion Form Factor Extracted from Pion Electro-production, arXiv:1811.09356
- \triangleright Conclusion.

Hadronic Form Factors: December 14, 2018. 2/ 77

 \blacktriangleright Lagrangian useful for understanding symmetries etc

$$
\mathcal{L}_{\text{QCD}} = \overline{q}(i\rlap{\,/}D - m)q - \frac{1}{4}G_{\mu\nu}^a G_a^{\mu\nu}
$$

- \triangleright Non-abelian, $SU(3)$ gauge field theory.
- Many questions remain.
- Masses of light quarks $\mathcal{O}(5 \text{ MeV})$
- Lightest baryon ~ 1 GeV (approx. 2 orders of magnitude larger!)
- \triangleright Where does this nucleon mass come from?
	- Emergent property of QCD .
	- \triangleright Dynamical generation of mass contributes more than 95 percent of hadronic mass.

Strongly Coupled Physics

- \blacktriangleright In low energy region, QCD coupling runs, and theory becomes non-perturbative.
- \triangleright Strongly coupled theory leads to emergent behavior.
	- \triangleright Dynamical chiral symmetry breaking and mass generation.
	-

■ Confinement. The Figure 1: PDG, 2015

OPEN QUESTIONS REMAIN

The Central Goal of Hadronic Physics

 \triangleright Central Goal of theoretical hadronic physics: Bridging the gap between \mathcal{L}_{QCD} and observed hadronic properties.

Figure 2: Image of gauge field configuration taken from J. Charvetto.

Quark models, Chiral EFT, Lattice QCD, Schwinger-Dyson Equations.

ELECTROMAGNETIC FORM FACTORS

Historical Perspective

- \blacktriangleright Form factor introduced in 50's to explain proton scattering data.
- Introduce charge density $\rho(\vec{r})$.
- \blacktriangleright Form factor proportional to Fourier Transform of charge density (in NR limit): Extended structure.

Baryon Electromagnetic Form Factors

 \triangleright Contain information about the structure of the baryon.

$$
\sum_{\alpha}^{\beta} = \overline{u}(p') \Gamma^{\mu}(p',p) u(p) = \overline{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i \sigma^{\mu \nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)
$$

$$
\blacktriangleright Q^2 = -q^2
$$

 $\langle r^2 \rangle = -\frac{6}{64}$

 \mathcal{L}

Common to use the Sachs Parametrisation.

$$
G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2)
$$

$$
G_M(Q^2) = F_1(Q^2) + F_2(Q^2)
$$

 \triangleright 3D charge Radius for $i = E, M$

d

 $G_i(0)$

 \blacktriangleright Magnetic moment for $i = p, n$ (units of μ_N)

$$
\mu_i = G_M^i(0)
$$

Hadronic Form Factors: December 14, 2018. 9/ 77

 $\left. \frac{d}{dQ^2} G_i(Q^2) \right|_{Q^2 = 0}$

BARYON ELECTROMAGNETIC FORM FACTORS

 \triangleright Contain information about the structure of the baryon.

$$
\sum_{\nu=0}^{\infty} \frac{1}{\overline{u}(p')\Gamma^{\mu}(p',p)u(p)} = \overline{u}(p')\bigg[\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\bigg]u(p)
$$

$$
\blacktriangleright Q^2 = -q^2
$$

 \triangleright Common to use the Sachs Parametrisation.

$$
G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2}F_2(Q^2)
$$

$$
G_M(Q^2) = F_1(Q^2) + F_2(Q^2)
$$

- ▶ 3D charge Radius for $i = E, M$
- \blacktriangleright Magnetic moment for $i = p, n$ (units of μ_N)

$$
\mu_i=G_M^i(0)
$$

$$
\left\langle r^2\right\rangle=-\frac{6}{G_i(0)}\frac{d}{dQ^2}G_i(Q^2)\bigg|_{Q^2=0}
$$

CALCULATING ELECTROMAGNETIC FORM FACTORS IN THE Nambu–Jona-Lasinio (NJL) **MODEL**

The Nambu–Jona-Lasinio (NJL) Model

 \triangleright Low energy approximation of QCD: 4 fermion contact interaction

$$
\mathcal{L}= \overline{\psi}(i\partial\!\!\!/- \hat{m})\psi + \frac{1}{2}G_{\pi}\big[(\overline{\psi}\psi)^2 - (\overline{\psi}\gamma_5\vec{\tau}\psi)^2\big] - \frac{1}{2}G_{\omega}(\overline{\psi}\gamma^{\mu}\psi)^2 \\ - \frac{1}{2}G_{\rho}\big[(\overline{\psi}\gamma^{\mu}\lambda_i\psi)^2 + (\overline{\psi}\gamma^{\mu}\gamma_5\lambda_i\psi)^2\big]
$$

CONFINEMENT

 \triangleright Confinement failure of basic model, but imposed via Proper Time Regularisation & infra-red cutoff.

$$
\frac{1}{X^n} = \frac{1}{(n-1)!} \int_{1/\Lambda_{UV}^2}^{1/\Lambda_{IR}^2} d\tau \tau^{n-1} e^{-\tau X}
$$

- \triangleright Prevents singularities in the spectrum from on-shell quarks \implies confinement
- \triangleright Calculate BSE equation

CHIRAL CORRECTIONS TO BARYON ELECTROMAGNETIC FORM FACTORS

arXiv:1703.01032

- Long known that pion required dof in quark model calculations.
- Modern understanding of the pion as a pseudo-Goldstone Boson.
	- \triangleright Result of dynamical chiral symmetry breaking.
- **Formalized framework:** χ PT.
- Long distance (IR) properties are same as UV theory.
	- \triangleright Must be respected in any model of QCD.
- \triangleright A variety of ways to incorporate their effects.
	- \triangleright Previously calculated in the NJL Model as a dressing on quark propagator.

INCORPORATING PION EFFECTS

Quark Level

- \blacktriangleright Calculate pion effects from quark-pion coupling
- \blacktriangleright Idea goes back to Manohar and Georgi: Chiral Quarks and the Non-Relativistic Quark Model (1985) +

- Hadron Level
	- \triangleright Calculate pion loop corrections in (chiral) nucleon-pion EFT.

- \blacktriangleright Take guidance from χ PT
- Correct LNA behvaior of nucleon mass only obtained in hadron level approach. (Model independent)
- \triangleright We can examine the differences between the two approaches.

Pion-Nucleon Effective Field Theory

- Use chiral EFT.
- Work with a pseudoscalar pion-nucleon interaction:

$$
\mathcal{L}_{\textit{N}\pi} = -ig_{\pi\textit{N}}\overline{\psi}_{\textit{N}}\gamma_5\vec{\tau}\cdot\vec{\pi}\psi_{\textit{N}}
$$

After minimal substitution, one has three diagrams at first loop order.

Baryon Self Energy

- Must fit NJL model parameters to Bare Mass
- Related to physical mass via

$$
m_N = m_N^{(0)} + \Sigma(\phi)\big|_{\phi = m_N}
$$

Baryon Self Energy

- Must fit NJL model parameters to Bare Mass
- Related to physical mass via

$$
m_N = m_N^{(0)} + \Sigma(\phi)\big|_{\phi = m_N}
$$

Baryon Self Energy

- Must fit NJL model parameters to Bare Mass
- Related to physical mass via

$$
m_N = m_N^{(0)} + \Sigma(\phi)\big|_{\phi = m_N}
$$

NUCLEON RESULTS

Figure 5: G_E^p and G_M^p . Data from lattice studies

Similar!

Figure 6: G_E^n and G_M^n . Data from lattice studies

Similar!

GENERALIZING RESULTS TO **HYPERONS**

Hadronic Form Factors: December 14, 2018. 2018. 21/ 77

GENERALIZATION TO HYPERONS

Due to approximate $SU(3)_F$ symmetry, one has relations between nucleon-pion and hyperon-pion couplings.

$$
g_{\Lambda\Sigma\pi}=\frac{2}{\sqrt{3}}(1-\alpha)g_{NN\pi};\quad g_{\Sigma\Sigma\pi}=2\alpha g_{NN\pi}
$$

 \triangleright Although the particles themselves are different, topology of contributing diagrams are the same.

Simple replacements in equations allows generalization of the equations to consider the hyperons.

Hyperon Results

Figure 7: $G_{E}^{\Sigma^{+}}$ and $G_{M}^{\Sigma^{+}}$, data from lattice studies.

Hyperon Results

Figure 8: $G_E^{\Sigma^-}$ and $G_M^{\Sigma^-}$, data from lattice studies.

- ► Large contribution comes from π^- cloud on d quark $(e_{\pi^-}=-1,$ $e_d = -1/3$.
- \blacktriangleright Sigma minus:

$$
\left|\Sigma^-\right\rangle=\frac{1}{\sqrt{18}}[2\left|d_{\uparrow}d_{\uparrow}\mathsf{s}_{\downarrow}\right\rangle+\text{perm.}-\left|d_{\uparrow}d_{\downarrow}\mathsf{s}_{\uparrow}\right\rangle+\text{perm.}]
$$

 \blacktriangleright Leads to coherent enhancement.

- ► Large contribution comes from π^- cloud on d quark $(e_{\pi^-}=-1,$ $e_d = -1/3$.
- \blacktriangleright Sigma minus:

$$
\left|\Sigma^-\right\rangle=\frac{1}{\sqrt{18}}[2\left|d_{\uparrow}d_{\uparrow}\mathbf{\mathit{s}}_{\downarrow}\right\rangle+\text{perm.}-\left|d_{\uparrow}d_{\downarrow}\mathbf{\mathit{s}}_{\uparrow}\right\rangle+\text{perm.}]
$$

 \blacktriangleright Leads to coherent enhancement.

To summarize...

- \triangleright χ PT gives model independent information on IR physics.
- \triangleright Calculated chiral loop corrections to the NJL model at the Hadron Level.
- \triangleright Nucleon system insensitive to approach, but
- \blacktriangleright Hyperon system sensitive to implementation of pion loops: improvement of Σ^- magnetic moment.

THE PION ELECTROMAGNETIC FORM FACTOR

Figure 9: F_{π} extracted from simple model of pion electro-production.

- $\triangleright \ \chi$ PT \implies important for low energy hadronic physics.
- ▶ Simplest QCD system: 'Hydrogen Atom of QCD': Excellent testing ground.
- \triangleright Form factor spans large energy range: forces us to use a number of approaches.
- \triangleright Must understand the model used to extract the form factor well.
	- \triangleright Based on some theoretical arguments, we wanted to check the model dependence of the extracted pion form factor.

THEORETICAL APPROACHES

LOW ENERGY

Figure 10: Cloët et al. (2014)

Figure 11: FH approach, $m_{\pi} = 470$ MeV, Chambers et al. (2017)

Hadronic Form Factors: December 14, 2018. 30/ 77

High Energy Lepage and Brodsky:

 $Q^2 \mathcal{F}_\pi(Q^2) \rightarrow 16\pi f_\pi^2 \alpha_s(Q^2) \omega_\phi^2, \,\,\text{for}\,\,Q^2 > Q_0^2$

Historically, $\omega_{\phi} = 1$:

$$
\omega_{\phi} = \frac{1}{3} \int_0^1 dx \frac{1}{x} \phi_{\pi}(x)
$$

$$
\lim_{Q^2 \to \infty} \phi_{\pi}(x) = 6x(1-x)
$$

Measuring the pion form **FACTOR**
Experimental Measurements

- ► At low energy (\sim 0.3 GeV 2), scatter pion beam from electrons in liquid hydrogen target.
- \triangleright Measure recoiling pion and electron.

Differential cross section is

$$
\frac{d\sigma}{dq^2}\propto|F_{\pi}|^2\frac{1}{q^4}\bigg(1-\frac{q^2}{q_{\rm max}^2}\bigg)
$$

Hadronic Form Factors: December 14, 2018.

PION ELECTRO-PRODUCTION

- \triangleright Scatter electron off liquid hydrogen target.
- \blacktriangleright Knock pion out of nucleon's virtual meson cloud.
- \blacktriangleright Measure recoiling electron and produced pion.
- \blacktriangleright Two theoretical questions:
	- 1. How does F_{π} enter cross section?
	- 2. How does the 'off-shellness' effect the measurement of F_{π} ?
- \triangleright Must understand how extraction is currently performed.

Hadronic Form Factors: December 14, 2018.

THE STATE OF THE ART

Hadronic Form Factors: December 14, 2018. 34/ 77

UNDERSTANDING THE F_{π} **MEASUREMENT**

PHYSICAL REVIEW C 78, 045202 (2008)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². I. Measurements of the cross section for the 1 H(e, $e'\pi^{+}$)n reaction

H. P. Blok,^{1,2} T. Hern,^{3,4} G. M. Huber,⁵ E. J. Beise,⁵ D. Gaskell,⁴ D. J. Mack,⁴ V. Tadevosyan,⁶ J. Volmer,^{7,8} D. Abbott,⁴ K. Aniel, H. Anklin, J. St. Husen, E. J. Bense, D. Gassen, D. J. States, V. Joseph's D. K. Baker, J. D. Aniel, B. Barrett, H. C. Bochna.¹⁵ W. Borglin.²⁹ E. J. Brash³ H. Breuer.³ C. C. Chang.³ N. Chant.³ M. E. Christy.²³ J. Durge.⁴ T. Eden.⁴³⁸ R. Egt.⁴ H. Fenker, E. Gibson, ¹² R. Gilman, ^{4, 14} K. Gustafsson, ³ W. Hinton, ¹³ R. J. Holt.¹² H. Jackson, ¹² S. Jin, ¹⁹ M. K. Jones, ¹ C. E. Keppel, A.D. P. H. Kim, P. W. Kim, P. P. M. King, A. Klein, 2 D. Koltenuk, 21 V. Kovaltchouk, 5 M. Linne, 4 J. Liu, G. J. Lolos,⁵ A. Lung,⁴ D. J. Margaziotis,⁹ P. Markowitz,¹⁰ A. Matsumura,²² D. McKee,²³ D. Meekins,⁴ J. Mitchell,⁴ T. Miyoshi,²² H. Mkrtchyan,⁶ B. Mueller,¹² G. Niculescu,²⁴ I. Niculescu,²⁴ Y. Okayasu,²² L. Pentchev,¹¹ C. Pentrisat,¹¹ D. Pkz²⁵ D. Potterveld,¹² V. Puniabi,¹⁵ L. M. Ola.²⁹ P. Reimer,¹² J. Reinbold,²⁰ J. Roche,⁴ P. G. Roos,³ A. Sartv,¹⁴ L. K. Shin,¹⁹ G. R. Smith,⁴ S. Stepanyan,⁴ L. G. Tang,⁴ V. Tvaskis,³ R. L. J. van der Meer,⁵ K. Vansyoe,²⁰ D. Van Westrum,²⁶
S. Vidskovic,⁵ W. Vulcan,⁴ G. Warren,⁴ S. A. Wood,⁴ C. Xu₂⁵ C. Yan,⁴ W-X. Zhao,²² (Jefferson Lab F_n Collaboration)

PHYSICAL REVIEW C 78, 045203 (2008)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². II. Determination of, and results for, the pion form factor

G. M. Huber,¹ H. P. Blok,^{2,3} T. Hom,^{4,5} E. J. Beise,⁴ D. Gaskell,⁵ D. J. Mack,⁵ V. Tadevosyan,⁶ J. Volmer,²³ D. Abbon,⁵ K. Aniol.¹ H. Anklin.⁵³ C. Armstrong.³³ J. Arrington.¹¹ K. Assamagan.¹² S. Avery.¹² O. K. Baker.⁵³² B. Barrett.¹³ C. Borina,¹⁴ W. Borglin,⁹ E. J. Brash,¹ H. Brewer,⁴ C. C. Chang,⁴ N. Chang,⁴ M. E. Christy,¹² J. Dunne,⁵ T. Edm,^{5,33} R. Ent,⁵ C. BOOTRAT" W. BOOTRAT, A. BOOTRAT, A. BOOTRAT, A. C. CORES, T. P. (2001), T. P. CORES, T. P. (2001), T. P. CORES, T. G. J. Lolos.¹ A. Lung.⁵ D. J. Margaziotis.⁸ P. Markowitz.⁹ A. Matsumura.²¹ D. McKee,²² D. Meekins.⁵ J. Mitchell. T. Miyoshi,²¹ H. Mkrtchyan,⁴ B. Mueller,¹¹ G. Niculescu,²³ I. Niculescu,²³ Y. Okayasu,²¹ L. Pentchey,²³ C. Perdrisat,²³ D. Pitz.²⁴ D. Potterveld,¹¹ V. Puniabi,¹⁵ L. M. Oin,¹⁹ P. E. Reimer,¹¹ J. Reinhold,⁹ J. Roche,⁵ P. G. Roos,⁴ A. Sarty,¹⁵ L.K. Shin,²⁸ G.R. Smith,⁵ S. Stepanyan,⁶ L. G. Tang,⁵²² V. Tvaskis,²³ R. L.J. van der Meer,¹ K. Vansyos,²⁸ D. Van Westrum,²⁵ S. Vidakovie,¹ W. Vulcar,⁵ G. Warren,² S. Vulcar,5 G. Warren,² S. A. Wood waren, S. A. Woon, C. Au, C. Hin, W.A.
(Jefferson Lab F_x Collaboration)

Hadronic Form Factors: December 14, 2018.

DECOMPOSING THE CROSS SECTION

- \triangleright Cross section described in terms of
	- \blacktriangleright Q^2 : photon virtuality.
	- \triangleright W: Invariant mass of virtual photon proton system.
	- ► $t = (p_{\pi} q)^2$: Expresses virtuality of pion.
- \triangleright Cross section may be decomposed into 4 structure functions.

$$
(2\pi)\frac{d^2\sigma}{dt d\phi} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(\epsilon+1)}\frac{d\sigma_{LT}}{dt}\cos\phi + \epsilon \frac{d\sigma_{TT}}{dt}\cos 2\phi.
$$

 ϵ is a measure of the virtual photon polarization

- Important, as is known that Longitudinal cross section dominated by t-channel pion exchange.
	- \triangleright A good reconstruction of this structure function gives us a good change of extracting the pion form factor.
	- \triangleright The modern extraction uses the Vanderhaeghen Guidal and Laget (VGL) Model.

Hadronic Form Factors: December 14, 2018. 36/ 77

Born Term Model of Electro-production

▶ VGL Model based on Born Term pion exchange diagram:

(b) Required to restore gauge invariance

- Model is not gauge invariant, so one must include the s-channel diagram and KR term (when using a PV coupling) to restore gauge invariance.
- This is $i\mathcal{M}^{\mu}_{\textrm{BTM}}$

GAUGE INVARIANCE IN BTM MODEL

 \blacktriangleright WTI requires $q_\mu \mathcal{M}_{\mathsf{BTM}}^\mu = 0$

$$
iq_{\mu}\mathcal{M}_{\text{BTM}}^{\mu} \propto \overline{u}_{N} \left[\gamma_{5} \cancel{p}_{\pi} \frac{(\cancel{p}_{s} + m_{N})}{s - m_{N}^{2}} \cancel{q} + \gamma_{5} \cancel{p}_{t} \frac{q \cdot (p_{t} + p_{\pi})}{t - m_{\pi}^{2}} - \gamma_{5} \cancel{q} \right] u_{N}
$$

$$
\propto \overline{u}_{N} \gamma_{5} \left[\cancel{p}_{\pi} - (\cancel{p}_{\pi} - \cancel{q}) - \cancel{q} \right] u_{N}
$$

- \triangleright Delicate cancellation required.
- \blacktriangleright Limits the ways we can modify this amplitude.

IMPROVING AGREEMENT WITH DATA: REGGEIZING **AMPLITUDE**

- \triangleright Agreement between the model and data may be improved by Reggeizing the amplitude.
	- \triangleright Replace the Feynman Propagator for the *t*-channel pion exchange by its Reggeized version

$$
S_{\rm R}^{\pi}(t) = i(\alpha_{\pi}'\,W^2)^{\alpha_{\pi}(t)} \frac{\pi \alpha_{\pi}' \phi(t)}{\sin(\pi \alpha_{\pi}(t) \Gamma(1 + \alpha_{\pi}(t)))}
$$

- \triangleright Unless the s-channel and contact terms are also modified, gauge invariance will be broken again.
- \triangleright This is done in the VGL Model by multiplying these terms by a factor $\mathcal{S}^{\pi-1}_\mathsf{F}$ $\zeta_F^{\pi-1}(t) S_{\mathsf{R}}^{\pi}(t)$
- \triangleright One can also understand this Reggeization as multiplication of $i{\cal M}^\mu_{\rm BTM}$ by this overall factor:

$$
i\mathcal{M}^{\mu}_{\mathsf{R}}=S^{\pi-1}_{\mathsf{F}}(t)S^{\pi}_{\mathsf{R}}(t)\times[i\mathcal{M}^{\mu}_{\mathsf{BTM}}]
$$

Hadronic Form Factors: December 14, 2018. 39/ 77

- \triangleright The pion structure is incorporated my multiplying this amplitude by a factor of the pion form factor.
- \blacktriangleright To summarize:

$$
i{\cal M}_{\text{VGL}}^{\mu} = F_{\pi}(Q^2) \times [i{\cal M}_{\text{R}}^{\mu}]
$$

= $F_{\pi}(Q^2) \times S_{F}^{\pi-1}(t)S_{\text{R}}^{\pi}(t) \times [i{\cal M}_{\text{BTM}}^{\mu}]$

- In theory, one would expect s-channel diagram to be proportional to F_1^p $L_1^p(Q^2)$, but this breaks gauge invariance.
- \triangleright Only possible to have single form factor. Amounts to F_1^p $\mathcal{F}_1^p(Q^2) \approx \mathcal{F}_\pi(Q^2).$

EXTRACTING PION FORM FACTOR FROM DATA

- \triangleright Measure cross section at a range of t values for fixed Q^2 and W .
- Longitudinal cross section is

$$
\frac{d\sigma_L}{dt} \propto |F_\pi|^2
$$

$$
\blacktriangleright \; F_{\pi}(Q^2) = (1+Q^2/\Lambda_{\pi}^2)^{-1}
$$

- Fit model to cross section
- \blacktriangleright If required...
	- \blacktriangleright Fit each data point.
	- \blacktriangleright Extrapolate these points to $t = t_{\text{min}}$, where there is least contamination from interfering backgrounds not included in the VGL model.

SANITY CHECKS OF EXTRACTION

- \triangleright Clearly some simplifications in this model.
- How do we know we are extracting the pion form factor?

Hadronic Form Factors: December 14, 2018. 42/ 77

Key Questions

- 1. Currently, $F_1^p = F_{\pi}$: can we do better?
- 2. Can we incorporate the 'off-shellness' of particles?
- 3. What are the implications for the current measured data points?

Hadronic Form Factors: December 14, 2018.

Model Dependence of the Pion FORM FACTOR EXTRACTED FROM PION ELECTRO-PRODUCTION DATA

arXiv:1811.09356

Hadronic Form Factors: December 14, 2018.

- 1. Currently, form factors are all the same: can we do better?
- 2. Can we incorporate the 'off-shellness' of particles?
- 3. What are the implications for the current measured data points?
	- \triangleright Generate cross section in model (pseudodata), and then attempt to

Hadronic Form Factors: December 14, 2018. 45/ 77

- 1. Currently, form factors are all the same: can we do better?
- 2. Can we incorporate the 'off-shellness' of particles?
- 3. What are the implications for the current measured data points?
	- \triangleright Generate cross section in model (pseudodata), and then attempt to extract form factor using VGL-like Model.

Hadronic Form Factors: December 14, 2018. 45/ 45/ 77

- 1. Currently, form factors are all the same: can we do better?
- 2. Can we incorporate the 'off-shellness' of particles?
- 3. What are the implications for the current measured data points?
	- \triangleright Generate cross section in model (pseudodata), and then attempt to extract form factor using VGL-like Model.

Hadronic Form Factors: December 14, 2018. 45/ 45/ 77

A BOSONIC MODEL OF PION ELECTRO-PRODUCTION

Inspired by a simple model due to Miller.

PHYSICAL REVIEW C 80, 045210 (2009)

Electromagnetic form factors and charge densities from hadrons to nuclei

Gerald A. Miller

Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 18 August 2009; published 22 October 2009)

A simple exact covariant model in which a scalar particle Ψ is modeled as a bound state of two different particles is used to elucidate relativistic aspects of electromagnetic form factors $F(Q^2)$. The model form factor is computed using an exact covariant calculation of the lowest order triangle diagram. The light-front

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi_N)^2 - \frac{1}{2} m_N^2 \Psi_N^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 - \frac{1}{2} m_\pi^2 \pi^2 - g_{\pi N} \Psi_N^\dagger \tau \cdot \pi \Psi_N
$$

Hadronic Form Factors: December 14, 2018. 46/ 77

- 1. Currently, form factors are all the same: can we do better?
- 2. Can we incorporate the 'off-shellness' of particles?
- 3. What are the implications for the current measured data points?
	- \triangleright Generate cross section in model (pseudodata), and then attempt to extract form factor using VGL-like Model.

Hadronic Form Factors: December 14, 2018. 47/ 47/ 77

Pros and Cons

Pros

- \blacktriangleright Perturbative calculation: gauge invariant.
- \blacktriangleright Calculate to 1-loop order: obtain (different) form factors at vertices.

Simple.

Cons

- Perturbative calculation doesn't generally give form factors enough q^2 dependence.
- \triangleright Connection to QCD is tenuous
	- \blacktriangleright Prevents quantitative conclusions.

GENERATING PSEUDODATA

Hadronic Form Factors: December 14, 2018. 49/ 77

Hadronic Form Factors: December 14, 2018. The Superson Contractor of the Solid T7

PSEUDODATA: A SPECIFIC EXAMPLE

- \blacktriangleright Pseudodata: $i\mathcal{M}^\mu_{\text{1-loop}}$ \blacktriangleright Model: $i{\cal M}^\mu=F_\pi(Q^2)[i{\cal M}^\mu_{\rm BTM}]$ $\mathcal{F}_\pi(\mathsf{Q}^2) = (1\!+\!\mathsf{Q}^2/\Lambda_\pi^2)^{-1}$
- t range chosen to be same as experiment.

Hadronic Form Factors: December 14, 2018. 51/ 77

CROSS SECTION

Hadronic Form Factors: December 14, 2018. The Sale of the Sale

RESULTS

Apart from possibly point at $(Q^2, W) = (1.6, 1.95)$, results look ok.

Hadronic Form Factors: December 14, 2018. The Sale of the S3/ 77

SYSTEMATIC OVERESTIMATE?

Fit first 5% of allowed t.

Hadronic Form Factors: December 14, 2018. 55/ 77

HOW DO WE UNDERSTAND THE W DEPENDENCE?

- \triangleright A kinematic argument. Ideally, we would measure this process at $t = m_{\pi}^2$.
- \blacktriangleright $t < 0$ for electro-production.
- In t_{min} more negative for increasing Q^2
- $t_{\rm min}$ more negative for decreasing W
- In Larger W at the same Q^2 will allow a smaller (negative) $|t_{\text{min}}|$
- ► Closer to the pion pole. So interpretation of F_π as pion form factor better.

Hadronic Form Factors: December 14, 2018. 56/ 77

CONCLUSION

- \triangleright Pion electro-production allows us to measure the pion form factor at higher Q^2 .
- \triangleright We tested extraction method in simple model.
- Results seem to imply a reasonably accurate extraction is possible, except at certain kinematics.
- \triangleright Important to choose kinematics wisely to minimize extrapolation to pion pole.
- \triangleright Model extremely simple. A more complicated calculation including fermions is underway.
- \blacktriangleright Lattice QCD:

$$
\left\langle N(p')\pi(p_{\pi})\right| J^{\mu}(q) \left| N(p)\right\rangle \newline\left\langle \pi(k')\right| J^{\mu}(q) \left|\pi(k)\right\rangle = (k+k')F_{\pi}(Q^2)
$$

Thanks

Hadronic Form Factors: December 14, 2018. 59/ 77

REFERENCES

- [1] J. J. Kelly. Simple parametrization of nucleon form factors. Phys. Rev., C70:068202, 2004.
- [2] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014.
- [3] Randolf Pohl et al. The size of the proton. Nature, 466:213–216, 2010.
- [4] P. E. Shanahan, A. W. Thomas, R. D. Young, J. M. Zanotti, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schierholz, and H. Stben.

Electric form factors of the octet baryons from lattice QCD and chiral extrapolation.

Phys. Rev., D90:034502, 2014 pher 14, 2018.

Spare Slides

Hadronic Form Factors: December 14, 2018. 61/ 77

Describing Mesons and Baryons in the NJL MODEL

- ▶ Mesons in NJL Model are quark–anti-quark bound states
	- **Solve BSF**

$$
\tau(q) = \kappa + \int \frac{d^4k}{(2\pi)^4} \kappa S(k+q) S(k) \tau(q)
$$

- Baryons are quark di-quark bound states
	- \blacktriangleright Solve Faddeev Equation
- ► Calculate form factors by calculating BSE for $q\bar{q}\gamma$ vertex.

Variation of Nucleon Self Energy

- How do fits change if we vary our self energy?
	- \blacktriangleright This corresponds to modifying the parameter Λ in our pion-nucleon form factor $G(t)$.
- \triangleright Results are reasonable stable for self energies between 100 and 150 MeV.
- \triangleright Our choice of $\Sigma = 130$ MeV is seen to be reasonable.

Incorporate strong form factor at πN vertex

 \blacktriangleright Utilize a t-dependent Form Factor

$$
G(t) = \exp\left[\frac{(t-m_{\pi}^2)}{\Lambda^2}\right]
$$

to parameterize extended particle structure.

- \triangleright All observables become cutoff (Λ) dependent.
	- \triangleright Self energy cutoff dependent.

$$
m_N^{(0)} = m_N - \Sigma(m_N, \Lambda)
$$

E Bare mass (used in NJL Calculation) varies with Λ.

FITTING MODEL PARAMETERS

- \triangleright Self Energy not observable, so must take guidance from other models.
- ► CBM, Dyson-Schwinger, Lattice QCD suggest self-energy from process $N \rightarrow N\pi$ is of order 0.1 to 0.15 GeV
- In practice, this, along with the light quark mass (required to be chosen in the NJL Model) were scanned over.

MAGNETIC MOMENTS AND CHARGE RADII

Table 1: Experimental results are taken from [\[1,](#page-66-2) [2,](#page-66-3) [3\]](#page-66-0), except for the Σ^+ charge radius, for which there is currently no experimental value. In this case, a recent lattice QCD result [\[4\]](#page-66-1) is given instead. Charge radii are quoted in femtometres.

Table 2: Comparison of the predicted magnetic moments to experimental results for the proton, neutron, Σ^- and Σ^+ baryons. Experimental results are taken from [\[1,](#page-66-2) [2\]](#page-66-3). Magnetic moments are in units of nuclear magnetons $(\mu_N = e/2m_N)$.

Hadronic Form Factors: December 14, 2018. 66/ 77

MAGNETIC MOMENTS AND CHARGE RADII

Table 1: Experimental results are taken from [\[1,](#page-66-2) [2,](#page-66-3) [3\]](#page-66-0), except for the Σ^+ charge radius, for which there is currently no experimental value. In this case, a recent lattice QCD result [\[4\]](#page-66-1) is given instead. Charge radii are quoted in femtometres.

Table 2: Comparison of the predicted magnetic moments to experimental results for the proton, neutron, Σ^- and Σ^+ baryons. Experimental results are taken from [\[1,](#page-66-2) [2\]](#page-66-3). Magnetic moments are in units of nuclear magnetons $(\mu_N = e/2m_N)$.

Hadronic Form Factors: December 14, 2018. 66/ 77

Direct measurement has kinematic limitation

$$
\frac{d\sigma}{dq^2} \propto |F_{\pi}|^2 \frac{1}{q^4} \bigg(1 - \frac{q^2}{q_{\rm max}^2}\bigg)
$$

- \blacktriangleright Where q^2_{max} corresponds to backward scattering in CM frame.
	- \triangleright roughly proportional to pion beam momentum
- ► For 300 GeV pion beam, $q_{\text{max}}^2 = 0.288$ GeV².
- Close to this momentum, the cross section is suppressed, and an extraction becomes difficult.
- \triangleright Thus could only measure pion form factor up to about 0.3 GeV.

THE STATE OF THE ART

Hadronic Form Factors: December 14, 2018. 68/ 77

A Difficult Measurement (2008)

PHYSICAL REVIEW C.78, 045202 (2008)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². I. Measurements of the cross section for the 1 H(e, $e'\pi^{+}$)n reaction

H. P. Blok.¹² T. Horn.²⁴ G. M. Huber.³ E. J. Beise.³ D. Gaskell.⁴ D. J. Mack.⁴ V. Todessoon.⁴ J. Volmer.⁷⁴ D. Abbott.⁴ K. Aniel,⁸ H. Anklin,⁴,20 C. Armstrong,¹¹ J. Arrington,¹² K. Assamagan,¹³ S. Avery,¹³ O. K. Baker,^{4,23} B. Barrett,³ C. Bochna.¹⁵ W. Borglin.²⁹ E. J. Brash³ H. Breuer.³ C. C. Chang.³ N. Chant.³ M. E. Christy.¹³ J. Durge.⁴ T. Bden.⁴³⁶ R. Ent.⁴ H. Fenker,⁴ E. Gibson,¹² R. Gilman,^{4,18} K. Gustafsson,³ W. Hinton,¹³ R. J. Holt,¹² H. Jackson,²² S. Jin,¹⁹ M. K. Jones, C. E. Keppel, A.D. P. H. Kim, P. W. Kim, P. P. M. King, A. Klein, 2 D. Koltenuk, 21 V. Kovaltchouk, 5 M. Linne, 4 J. Liu, C. D. Lolos,⁵ A. Lung,⁴ D. J. Margaziotis,⁹ P. Markowitz,³³ A. Matsumm_a²² D. Mecken and T. Michell,⁶ A. Lung,⁴ D. J. Margaziotis,⁹ P. Markowitz,³³ A. Matsumma²² D. Mecken a⁴ J. Michell,⁶ T. Miyoth D. Pkz²⁵ D. Potterveld,¹² V. Puniabi,¹⁶ L. M. Oin,²⁹ P. Reimer,¹² J. Reinbold,²⁹ J. Roche,⁴ P. G. Roos.³ A. Sarty,¹⁴ L. K. Shin,¹⁹ G. R. Smith,⁴ S. Stepanyan,⁴ L. G. Tang,⁴ V. Tvaskis,³ R. L. J. van der Meer,⁵ K. Vansyoe,²⁰ D. Van Westrum,²⁶
S. Vidskovic,⁵ W. Vulcan,⁴ G. Warren,⁴ S. A. Wood,⁴ C. Xu₂⁵ C. Yan,⁴ W-X. Zhao,²² (Jefferson Lab E. Collaboration) ¹Dept. of Physics, VU university, NL-1081 HV Amsterdam, The Netherlands ²NIKHEF. Postbax 41882. NL-1009 DB Anuterdam. The Netherlands ³University of Maryland, College Park, Maryland 20742, USA ⁴ Physics Division, TINAE NewmartNews, Virginia 23606, USA ⁵University of Regins, Regins, Syskatchewan S4S 042, Canada ⁶ Yerevan Phesics Institute, 375036 Yerevan, Armenia ⁷Faculteit Natuur- en Sternenkunde, Vrije Universiteit, NL-1081 HV Amsterdam. The Netherlands **FDESY Hashare Germany** ⁹California State University Los Angeles, Los Angeles, California 90032, USA ¹⁰ Florida International University Miami, Florida 33119, USA ¹¹College of William and Mary, Williamsburg, Virginia 23187, USA ¹²Arrowse National Laboratory, Arrowse, Illinois 60439, USA ¹³ Hampton University, Hampton, Virginia 23668, USA ¹⁴ Saint Mary's University, Hallfax, Nova Scotia, Canada ¹⁵University of Illinois, Champaign, Blinois 61801, USA ³⁶Norfolk State University Norfolk, Virginia 23504, USA ¹⁷California State Heiser site. Socranoveno. Colifornia 95819. ISSA ¹⁸Rateers University, Piscatsway, New Jersey 08855, USA ¹⁹Kyanepook National University, Taezu, Korea ²⁰OM Dominion University Northlk, Virginia 23529, USA ²¹ Heiserstre of Pennsylvania, Philadelphia, Pennsylvania 19104, 1954. ²³Tohoku University, Sendai, Japan ²³Nov Mexico State University, Las Cruces, New Mexico 88003-8001, USA ²⁴ James Mailizon University. Harrisonbury. Virginia 22807. USA ²⁵ DAPNIA/SPM, CEA/Saclay, F-91191 Gif-sur-Yvette, France ²⁶University of Colorado, Boulder, Colorado 76543, USA ²⁷MJT-Laboratory for Nuclear Sciences and Department of Physics, Cambridge, Massachusetts 02139, USA ²⁸Umberzity of Virginia. Charlottesydlle, Virginia 22901, USA (Received 11 July 2008; published 15 October 2008).

> Cross sections for the reaction ¹H(e, $e'\pi^+$)a were measured in Hall C at Thomas Jefferson National Accelerator Recibits (R ab) soles the bigh intensity Continuous Rection Beam Accelerator Recibits (CERAIN to determine the charged rion form factor. Data were taken for central four-momentum transfers maxima from $Q^2 = 0.60$ to 2.45 GeV² at an invariant mass of the virtual photon-nucleon system of $W = 1.95$ and 2.22 GeV. The measured cross sections were separated into the four structure functions σ_L , σ_T , σ_{1T} , and $\sigma_{\rm IT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high-precision results. The different types of evoterratic uncertainties are also discussed. The musits for the separated cross sections as a function of the Mondelston warishle r at the different values of O^2 are presented. Some shabal features of the data are discussed, and the data are compared with the results of some model calculations for the reaction **REGULAR FOR**

DOI: 10.1103/PhysRevC.78.045202

PACS number(s): 14.40.Au, 11.55.Iv, 13.40.Go, 13.60.Le

BUVCLOAT REVIEW C 18 045303 (2006)

Charged pion form factor between $Q^2 = 0.60$ and 2.45 GeV². II. Determination of, and results for. the pion form factor

G. M. Huber,¹ H. P. Blok,^{2,3} T. Hom,^{4,5} E. J. Beise,⁴ D. Gaskell,⁵ D. J. Mack,⁵ V. Tadevosyan,⁶ J. Volmer,²³ D. Abbon,⁵ K. Aniol.¹ H. Anklin,⁵³ C. Armstrong,³³ J. Arrington,¹¹ K. Assamagan,²² S. Avery,¹² O. K. Baker,⁵³² B. Barrett, C. Bochna.¹⁴ W. Boeglin," E. J. Brash.' H. Brewer," C. C. Chang, " N. Charg," M. E. Christy, ¹² J. Danne," T. Eden,^{5,13} R. Ent.¹ H. Fenker, E. E. Gibson, F. R. Gilman, ⁵¹⁷ K. Gustafsson, ⁵ W. Hinton, ¹² R. J. Holt, ¹³ H. Jackson, ¹³ S. Jim ¹⁸ M. K. Jones, C. E. Keppel, K.P. P. H. Kim, ¹⁸ W. Kim, ¹⁸ P. M. King, ⁴ A. Klein,³⁹ D. Koltenuk,²⁹ V. Kovaltchouk,¹ M. Liang, ⁵ J. Liu,⁴ C. E. Keppel, ⁶ P. H. Kim, ¹⁸ W. Kim, ¹⁸ P. M. Kim, ¹⁸ P. M. Kim, ¹⁸ P. M G. J. Lolos.³ A. Lung.⁵ D. J. Margaziotis.⁸ P. Markowitz.⁹ A. Matsumura.²¹ D. McKee,²² D. Meekins.⁵ J. Mitchell. T. Miyoshi,²¹ H. Mkrtchyan,⁴ B. Mueller,¹¹ G. Niculescu,²³ I. Niculescu,²³ Y. Okayasu,²¹ L. Pentchey,²³ C. Perdrisat,²³ D. Pitz²⁴ D. Potterveld ¹¹ V. Punjabi, ¹⁵ L. M. Oin, ¹⁹ P. E. Reimer, ¹¹ J. Reinhold, ⁹ J. Roche, ⁵ P. G. Roos, ⁴ A. Sarty, ¹⁵ L. K. Shin,³⁸ G. R. Smith,⁵ S. Stepanyan,⁶ L. G. Tang,⁵¹² V. Twakis,²³ R. L. J. van der Meer,¹ K. Vansyos,¹⁰ D. Van Westram,²⁵ S. Vandkovie,¹ W. Westram,²⁵ S. Vandkovie,¹ W. Vulcan,⁵ G. Warren,² S (Jefferson Lab F. Collaboration) ¹University of Revina, Revina, Saskatchewan S4S 0A2, Canada ²VU university, NL-1081 HV Americalum. The Netherlands ³NIKHEE Pactbus 41882. NL-1009 DB Amsterdam. The Netherlands Armse, rooms wood, ourcom top amountains, res pemerian
"University of Maryland, College Park, Maryland 20742, USA ⁵ Physics Division, TJNAF, Newport News, Virginia 23606, USA ⁶Tereson Physics Institute, 175016 Tereson, Armenia. ⁷DESY, Hamburg, Germany ⁸California State University Los Angeles, Los Angeles, California 90032, USA ⁹ Florida International University Miami, Florida 13119, USA College of William and Mary, Williamsburg, Virginia 23187, USA ²¹ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ^E However University Hamston, Versiera 23668, USA ¹³ Saint Mary's University, Halifax, Nova Scotia, Canada ¹⁴ University of Illinois, Champaign, Blinois 61801, USA ¹⁵Norfolk State University, Norfolk, Virginia, USA ¹⁶California State Haisersity, Sacramento, California 95819, ISSA ¹⁷Rutgers University, Piscotaway, New Jersey 08855, USA ¹⁸Kyungpook National University, Taegu, Korea ¹⁹Old Dominion University, Norfolk, Virginia 23529, USA ²⁸University of Pennsylvania. Philadelphia. Pennsylvania 19104. USA ²¹Toboku University, Sendal, Japan ²²New Mexico State University, Las Cruces, New Mexico 88003-8001, USA ²³ James Madison University, Harrisonbury, Virginia 22807, USA ²⁴DAPNIASPAN, CEASaclay, F-91191 Gif-no-Yuene, France ²⁵University of Colorado, Boalder, Colorado 76543, USA ²⁶M. J. T. Laboratory for Naclear Sciences and Denarouent of Physics. Cambridge: Massachusetts 02139-1154. ²⁷University of Virginia Charlotterville, Virginia 22901, 1754. (Received 11 July 2008; published 15 October 2008)

> The charged vion form factor, $F_n(O^2)$, is an innocrtant quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of F. from data requires a model of the ¹H/e, e'm⁺¹M reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for F_r are presented for $Q^2 = 0.60 - 2.45 \text{ GeV}^2$. Above $O^2 = 1.5$ GeV¹, the Fe values are systematically below the monopole parametrization that describes the low \overline{O}^2 data used to determine the nion charre radius. The nion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This companison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate $O²$ regime

DOI: 10.1103/PhysRevC.7R.045203

L. INTRODUCTION There is much interest in trying to understand the structure

constituents, the quarks and gluons. However, this structure is too complicated to be calculated rigorously in quantum of hadrons, both mesons and barvons, in terms of their chromodynamics (OCD) because perturbative OCD (pOCD)

PACS number(s): 14.40.Ag, 13.40.Gp, 13.60.Le, 25.30.Rw

0556-2813/2006/28/45/04/202220

orston.a

@2008 The American Physical Society

0556-2813/2008/78/4V045203/16

045203-1

@2008 The American Physical Society

Hadronic Form Factors: December 14, 2018

Kinematics and Conventions

Figure 14: Blok et al., 2008

Mandelstam Variables:

$$
s = p_s^2 = (p + q)^2 = (p' + p_\pi)^2 \equiv W^2
$$

\n
$$
t = p_t^2 = (p_\pi - q)^2 = (p - p')^2 < 0
$$

\n
$$
u = p_u^2 = (p - p_\pi)^2 = (p' - q)^2
$$

Experimentally, use Q^2 , W and t.

Hadronic Form Factors: December 14, 2018. The Matter of the TO / 77

SANITY CHECKS OF EXTRACTION

Construct ratio:

$$
R_L = \frac{\gamma_L^* n \to \pi^- p}{\gamma_L^* p \to \pi^+ n} = \frac{|A_v - A_s|^2}{|A_v + A_s|^2}
$$

 \blacktriangleright A_s : Isoscalar amplitude, A_v : Isovector amplitude. t-channel pion amplitude isovector.

Hadronic Form Factors: December 14, 2018. The magnetic method of the Taylor and Taylor and

t Dependent Form Factor

CONSTANT W EXTRACTION

Evidence for Enhanced Form Factor

PHYSICAL REVIEW C 97, 015203 (2018)

Off-shell persistence of composite pions and kaons

Si-Xue Oin.^{1,*} Chen Chen.^{2,†} Cédric Mezrag.^{3,‡} and Craig D. Roberts^{3,§} ¹Department of Physics. Chongaing University. Chongaing 401331 . People's Republic of China ²Instituto de Física Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, Brazil

³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 20 February 2017; revised manuscript received 20 November 2017; published 17 January 2018)

In order for a Sullivan-like process to provide reliable access to a meson target as t becomes spacelike, the pole associated with that meson should remain the dominant feature of the quark-antiquark scattering matrix and the wave function describing the related correlation must evolve slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we explore and delineate the circumstances under which these conditions are satisfied: for the pion, this requires $-t \leq 0.6 \text{ GeV}^2$, whereas $-t \leq 0.9 \text{ GeV}^2$ will suffice for the kaon. These results should prove useful in planning and evaluating the potential of numerous experiments at existing and proposed facilities.

DOI: 10.1103/PhysRevC.97.015203

Hadronic Form Factors: December 14, 2018. The matter of the Tall 77

Evidence for Enhanced Form Factor

- How does pion form factor vary off-shell?
- \blacktriangleright Although off-shell pion is not well defined, can attempt to address question using BSE.
- \blacktriangleright v \geq 0 parameterizes "off-shellness" in units of m_π^2

$$
\blacktriangleright t = 0.015 \approx m_{\pi}^2 \text{ GeV}^2, \ v = 1
$$

•
$$
t = 0.35 \approx 18 m_{\pi}^2
$$
 GeV², $v = 18$

Hadronic Form Factors: December 14, 2018.

MODEL INDEPENDENT EXTRACTION?

- \triangleright Can attempt a model independent extraction of pion form factor.
- Since $t < 0$, we want to extrapolate to $t=m_{\pi}^2$
- \blacktriangleright Form of extrapolation is unknown.
- \blacktriangleright Linear, quadratic, higher order all fit data well.
- The modern extraction is model dependent and uses the VGL Model. **Model Model Example 20** Figure 15: Linear (dotted blue), quadratic

(dashed black) and cubic (solid red) fits to data.

Hadronic Form Factors: December 14, 2018.

NOT QUITE SO SIMPLE...

- 1. Also have interference from s and u channel terms.
	- **Proportional to Nucleon Form Factors**

- 2. Pion is initially off-shell. What does this mean for the extraction of F_π ?
	- \blacktriangleright Theoretically?
	- Empirically?