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What happens when you integrate transverse 
momentum?

• Positivity/Sum Rules for ordinary pdfs?

• TMD/Twist-3 correspondence

• Matching small and large transverse momentum

• Lorentz-invariance relations

• Equations of motion relations

f(x;µ) � 0
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H(k, P, ∆)

H(x, k, ξ,∆)

H(x, ξ, ∆2)

∑n
k=0 Ank(∆2) (2ξ)k

H(x, k, ξ, b)

H(x, ξ, b)

W (x, k, b)

f(x, b)f(x, k)

f(x) Fn(b) Fn(∆2)

f(k, P )

f(x, z)

∫
d2b

∫
d2b

∫
d2k

∫
d2k

∫
dk−
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dk−

∫
d2k

∫
dx xn−1

∆ = 0

ξ = 0

ξ = 0
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FT
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GTMD

GPD

TMD

form factor

GFFs

PDF

parton correlation function

parton correlation function

distribution

impact parameter

∫
dx xn−1

Wigner distribution

FT

Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P, ∆) defined in (1).
Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-momentum
(commonly called “longitudinal-momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant momentum
transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 + ∆2)/(1 − ξ2). Only kinematic
arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation of
rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

R
dk− and

R
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

to form a quark density we have

q̄(z−2 ,k2)Γ q(z−1 ,k1) =∫
d2z2 d2z1 ei(k2z2−k1z1) q̄(z−2 ,z2)Γ q(z−1 ,z1) . (5)

Rewriting the Fourier exponent as

k2z2 − k1z1 =
1
2
(z2 + z1)(k2 − k1)

+
1
2
(k2 + k1)(z2 − z1) , (6)

we can read off the relation between Fourier conjugate
variables:

average position ↔ momentum difference ,

average momentum ↔ position difference ,

where “average” and “difference” refer to the right- and
left-hand sides of fig. 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in fig. 2. Let us start at the top
of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact description of
final-state kinematics [7,8]. Under the name of “beam
functions”, they have also been introduced in soft-
collinear effective theory (SCET) for the resummation
of large logarithms in observables sensitive to the pro-
ton remnants (called “beam jets”) [9–11]. In that case,
distributions differential in k− but integrated over k
are referred to as beam functions as well. The consid-
erations in [6] and [9–11] focus on the region of large
parton virtuality k2 and compute the unintegrated dis-
tributions in terms of conventional parton distribution
functions (PDFs), an aspect we will discuss in more
detail for TMDs in sect. 4.
A detailed analysis of factorisation with uninte-
grated distributions has been given for semi-inclusive
deep inelastic scattering (SIDIS) in [8]. For hadron-
hadron collisions there are strong arguments that
this type of factorisation generically fails, due to
soft gluon exchange between the spectator partons in
each hadron [12,13]. In kinematics referred to as the
Glauber region, these soft interactions “tie together”
the two hadrons in a way that prevents one from de-
scribing the non-perturbative dynamics by matrix el-

M. Diehl, Eur.Phys.J.A 52 (2016) 6, 149 8
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Two views of factorization

• Track A:
– Start with the operator definition of the pdf
• Deal with UV divergences with renormalization

– Derive factorization by analyzing dominant regions

– Higher orders are constructed from nested 
subtractions 

2

the technical framework of factorization had been fully
developed. We will explain how these diverging concep-
tual tracks formed: One track, which we call track-A
or the “renormalized light-front” view originated in ef-
forts to give the earliest parton ideas a concrete realiza-
tion in quantum field theory. The second track (track-
B) we will call the “collinear absorption” view, and it
arose early out of the practical need to perform practical
calculations with limited available techniques. A descrip-
tion and comparison of the two tracks will be provided in
Sec. II and Sec. III. We will argue that track-A is actually
the correct one in Sec. IV.2 Our larger goal for this arti-
cle is a critical assessment of these two tracks, with the
positivity question being only one convenient example of
how the track-A/track-B distinction can have practical
relevance.

N.B. a. Same issue in calculation of renormalization of
bare coupling in QCD for a lattice theory: It must be a
pure UV quantity, in contrast to what is obtained with
the classic on-shell renormalization scheme in QED.

N.B. b. Refer to R⇤ operation; what track-A does
to construct short-distance coe�cient function is essen-
tially R⇤, but with a conceptual formulation that can be
more general. (I think — CHECK!! — that standard R⇤
makes use of the Smirnov trick with dimensional regular-
ization.

II. TRACK-A: RENORMALIZATION AND
LIGHT-CONE PDFS

As mentioned in the introduction, track-A is based on
operator definitions for light-cone pdfs, defined in terms

of elementary fields, and it originates in e↵orts to provide
a field-theoretical basis, heavily influenced by light-cone
quantization techniques [17], for the original pdf con-
cept. Early examples are from Soper [13] and Collins [18]
(which includes transverse momentum dependence), and
the formalism of pdfs and fragmentation functions was
developed in [15]. At least for collinear pdfs, this form
of the definition has continued to be used to the present,
without modifications.

The factorization approach in track-A was consciously
inspired by the leading-power application of the already
known and applied operator-product expansion (OPE).
Indeed the overall structure of collinear factorization and
of the OPE are very similar, and much of the factor-
ization work was inspired by the work of Wilson and
Zimmermann (e.g. [19, 20]). Moreover, when one takes
certain integer moments of DIS structure functions, the
results of factorization give the same result as the OPE
for the same quantity.
For unpolarized quark pdfs, one first defines a bare

quark pdf,

f
bare,a(⇠) ⌘

Z
dw�

2⇡
e
�i⇠p+w�

hp|  ̄0(0, w
�
,0T)

�
+

2
W [0, w�] 0(0, 0,0T) |pi . (1)

where  0 is the bare quark field from the bare Lagrangian
density that defines the theory. The W [0, w�] is a light-
like Wilson line, also defined with bare field operators.
To simplify the discussion, we have dropped flavor sub-
scripts. Because of the bare field operators in Eq. (1),
this definition is closely associated with a quark number
density operator [16, Chapt. 6]. The “a” superscript is to
distinguish this track-A bare pdf from a di↵erent track-B
concept to be discussed later in Sec. III.

An MS renormalized pdf is defined in terms of the bare
pdf by including a renormalization factor Za,

f
renorm,a(⇠) ⌘ Z

a ⌦ f
bare,a

. (2)

with Z
a defined by analogy with renormalization factors

for parameters in the QCD Lagrangian,

Z
a = �(1� ⇠) +

1X

j=1

Cj

✓
S✏

✏

◆j

, (3)

with Cj being the coe�cients necessary to subtract only
the powers of S✏/✏, with S✏ ⌘ (4⇡)✏/�(1� ✏) ' (4⇡�E)✏.
The ⌦ symbol is the usual convolution over collinear mo-
mentum fraction,

[A⌦B] (⇠) ⌘
Z 1

⇠

d⇠0

⇠0
A(⇠/⇠0)B(⇠0) . (4)

Notice that we carefully distinguish parton momentum
fraction (⇠) from process specific kinematic variables like
Bjorken xbj, although below we will frequently drop ⇠
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Positivity

• Practical consequences?

• Example: Track-B leads to arguments that pdf positivity as an 
absolute property of pdfs in certain schemes

A. Candido, S. Forte, and F. Hekhorn (2020), 2006.07377 
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• Stress-test assertions in any finite-range  renormalizable 
theory

• Exact Ο(#!) DIS cross section is easy to calculate exactly

3
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FIG. 1: Contributions to DIS from Eq. (16) at O (↵ a�). Graph (a) is the handbag diagram that contributes at leading power

and small transverse momentum. Graphs (b) and (c) contribute at leading power to large kT (the Hermitian conjugate for (c)

is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).

where cWµ⌫
f/f 0(x/⇠, q) is a partonic structure tensor for a massless, on-shell partonic target of flavor f 0, ff 0/p(⇠;µ) is a

pdf for a parton flavor f 0 in target p, µ is a renormalization group scale, and
P

f,f 0 is a sum over all flavors. The last
line defines the usual convolution notation:

A⌦B ⌘
Z 1

x

d⇠

⇠
A(x/⇠)B(⇠) . (13)

The analogous expressions for structure functions are

F1(x,Q
2) =

X

f,f 0

Z 1

x

d⇠

⇠
F̂1,f/f 0(x/⇠, µ2

/Q
2;µ)ff 0/p(⇠;µ) +O

�
m

2
/Q

2
�

(14)

=
X

f,f 0

F̂1,f/f 0 ⌦ ff 0/p +O
�
m

2
/Q

2
�
,

F2(x,Q
2) =

X

f,f 0

Z 1

x
d⇠F̂2,f/f 0(x/⇠, µ2

/Q
2;µ)ff 0/p(⇠;µ) +O

�
m

2
/Q

2
�

(15)

=
X

f,f 0

⇠F̂2,f/f 0 ⌦ ff 0/p +O
�
m

2
/Q

2
�
.

In the limit that O
�
m

2
/Q

2
�
terms are negligible, the structure functions have process-specific parts, F̂1,2, and pdfs,

ff 0/p, that are intrinsic to the target. The separation and identification of these pieces when m
2 ⌧ Q

2 is the
factorization we aim to illustrate in Secs. V–VI.

III. MASSIVE SCALAR YUKAWA THEORY

We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1/2 “quark” field  q with mass mq, and a zero charge scalar “diquark” or “gluon” state � with a mass
ms. The numerical value of � fixes the strength of this interaction. We will find it useful to use the notation

a�(µ) ⌘
�
2

16⇡2
, (17)

in analogy with similar notation, as = g
2
s/(16⇡

2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1

1 This was done in [1], so we do not discuss the details further here.
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where cWµ⌫
f/f 0(x/⇠, q) is a partonic structure tensor for a massless, on-shell partonic target of flavor f 0, ff 0/p(⇠;µ) is a

pdf for a parton flavor f 0 in target p, µ is a renormalization group scale, and
P

f,f 0 is a sum over all flavors. The last
line defines the usual convolution notation:
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2 is the
factorization we aim to illustrate in Secs. V–VI.
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We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1/2 “quark” field  q with mass mq, and a zero charge scalar “diquark” or “gluon” state � with a mass
ms. The numerical value of � fixes the strength of this interaction. We will find it useful to use the notation

a�(µ) ⌘
�
2
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, (17)

in analogy with similar notation, as = g
2
s/(16⇡

2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1

1 This was done in [1], so we do not discuss the details further here.
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• Collinear Factorization

11

FIG. 2: Example calculations of F1(x,Q) and F1,fact(x,Q) calculated in the Yukawa theory. The solid curves are the exact

calculation (the graphs in Fig. 1) and the dashed curves are the factorized calculation in Eq. (52). For the largest values of Q,

the distinction between the factorized and exact curves becomes invisible.

Dropping the O
�
m

2
/Q

2
�
and O

�
a
2
�

�
in Eq. (51), we can define the factorized approximation to the O (a�):

F
(1)
1,fact(x,Q) ⌘

X

f

Z 1

x

d⇠

⇠
⇥

⇥ 1

2

8
><

>:
�

✓
1� x

⇠

◆
�qf + a�(µ)

✓
1� x

⇠

◆
2

64ln (4)�

⇣
x
⇠

⌘2
� 3x

⇠ + 3
2

⇣
1� x

⇠

⌘2 � ln
4xµ2

Q2(⇠ � x)

3

75 �pf

9
>=

>;
| {z }

F̂1,q/f (x/⇠,µ/Q;a�(µ))

⇥

⇥
⇢
� (1� ⇠) �fp + a�(µ)(1� ⇠)


(mq + ⇠mp)2

�(⇠)2
+ ln

✓
µ
2

�(⇠)2

◆
� 1

�
�fq

�

| {z }
ff/p(⇠;µ)

. (52)

So

F
(1)
1 (x,Q) = F

(1)
1,fact(x,Q) +O

✓
m

2

Q2

◆
(53)

for any x away from elastic scattering, x = 1.
The validity of the factorization above, as an approximation with errors strongly suppressed by powers of m2

/Q
2,

is confirmed in direct comparisons between the exact calculation of F
(1)
1 (x,Q) and the approximate F

(1)
1,fact(x,Q)

calculated with Eq. (52). (By an exact calculation of F (1)
1 (x,Q), we mean an direct calculation of the graphs in

Fig. 1 with no approximations.) Fig. 2 shows numerical results for F
(1)
1 (x,Q) and F

(1)
1,fact(x,Q) as a function of x

for a range of Q and with mp = ms = .938 GeV and mq = .3 GeV. These numerical values are chosen to represent
typical hadronic mass scales and a typical bound state quark mass, and to get a transition to factorizable kinematics
at around Q = 1 GeV. Some features to note are the following: The exact results have a sharp kinematical upper
bound on x (see the blue curve for Q = 1 GeV) while the factorized expressions are real for all x < 1. The transition
to the region where factorization works tends to be slower at large x, due to the 1/(1 � x) factors in Eq. (52). The
large Q Q-dependence is logarithmic, and this can be seen in the weak variation between the curves for largest values
of Q.
The e↵ect of the factorization approximation is easier to visualize on a graph of the percent error itself, defined as

Percentage Error = 100%

����1�
F1,fact(x,Q)

F1(x,Q)

���� . (54)

13

let us implement them anyway by choosing µ = Q
4 in Eq. (51):

F
(1)
1 (x,Q) =

X

f

Z 1

x

d⇠

⇠
⇥

⇥ 1

2

8
><

>:
�

✓
1� x

⇠

◆
�qf + a�(Q)

✓
1� x

⇠

◆
2

64ln (4)�

⇣
x
⇠

⌘2
� 3x

⇠ + 3
2

⇣
1� x

⇠

⌘2 � ln
4x

(⇠ � x)

3

75 �pf

9
>=

>;
| {z }

F̂1,q/f (x/⇠,1;a�(Q))

⇥

⇥
⇢
� (1� ⇠) �fp + a�(Q)(1� ⇠)

✓
(mq + ⇠mp)2

�(⇠)2

◆
+ ln

✓
Q

2

�(⇠)2

◆
� 1

�
�fq

�

| {z }
ff/p(⇠;Q)

+O
�
a�(Q)2

�
+O

�
m

2
/Q

2
�
. (55)

Looking inside the F̂1,q/f (x/⇠, 1; a�(Q)) expression hints at what happens in the QCD case: The powers of the coupling
coupling vanishes as Q � ⇤QCD while the coe�cients remain fixed (for fixed x), and a good fixed order perturbative
treatment of the partonic structure function is obtained. In an asymptotically free theory like QCD, this justifies
viewing partonic quarks and gluons as the relevant degrees of freedom for the short distance, partonic part of the
interaction.

In the pdf, Eq. (55) again hints at what happens. In ff/p(⇠;Q), the logarithm diverges as Q grows much larger
than intrinsic mass scales like �(⇠). So with the above choice for µ, despite the smallness of as(Q) (in the QCD
version), a truncated perturbative treatment is almost certainly not reasonable in the large Q limit. If one instead
tries a small scale like µ = �(⇠) to eliminate these large logarithms, then the as(µ) becomes large due to the strong
coupling of QCD at small scales. So renormalization group improvement does not appear to help in providing a reliable
perturbative treatment of the pdf. That should not be surprising given that the pdf deals with large scale structure
where QCD is non-perturbative. Fortunately, however, the factorization derivation tells exactly what f/p(⇠;Q) is
to arbitrary order in a�(Q) (it is Eq. (23)) and this justifies simply replacing the third line of Eq. (55) by a non-
perturbative calculation of Eq. (23) using specifically non-perturbative techniques. Alternatively, if the same Eq. (23)
appears in factorization theorems for multiple experimental observables, it can be extracted from one observable and
be used in calculations for another. This is what is meant by the common assertion that pdfs are universal.

Note that the last strategy for using factorization is complicated by the fact that the pdf is not completely universal
due to its dependence on µ, and the optimal value of µ is process specific. For example, say that the ff/p(⇠;Q1) above
is extracted from a measurement perform with Q1. The renormalization group improvement in QCD implies that we
use µ = Q1 in the factorization formula. However, say that we then wish to use the result to make a prediction for a
measurement at another value, say Q2. In the second of these experiments, renormalization group improvement again
prescribes µ = Q2. However, the two pdfs ff/p(⇠;Q1) and ff/p(⇠, Q2) will di↵er by terms with powers of ⇠ ln(Q2

2/Q
2
1),

and these terms can be non-negligible if Q1 and Q2 are very di↵erent. Fortunately, there is a renormalization group
equation for Eq. (23) that relates di↵erent values of µ via a perturbatively well-behaved kernel, and can be derived
by considering the properties of the renormalization factors like the Z in Eq. (23) under changes in µ. In QCD, this
results in the DGLAP evolution equation.

VIII. EXTENSION TO TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION

The above results provide an easy way to demonstrate some of the subtleties that can arise when extending
factorization beyond the collinear case. Let us see how the same steps can be used to describe the semi-inclusive cross
section:

proton(pµ) + �
⇤(qµ) �! quark(pµB) +X (56)

4 Generally, the proportionality between µ and Q can be di↵erent from 1, i.e. µ = CQ with C being a numerical constant. We have used
1 for simplicity.
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• Negative pdfs 7
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FIG. 3: An example of the MS quark-in-proton pdf from Eq. (19) with mq = mp = 0.3 GeV and ms = 8.0 GeV. The Q variable
shown could be, for example, the virtual photon o↵shellness �q

2 = Q
2 = 100 GeV2 in a DIS a structure function calculation

(e.g., Eq. (A3)). Curves for two di↵erent order Q values of µ are shown: Blue-solid is for µ = Q and brown-dashed is for
µ = Q/2. Note that both choices produce exactly the same result for the DIS structure function.

and transversity distributions respectively. The So↵er
inequality is

�f(⇠;µ) + f(⇠;µ) � 2 |�T f(⇠;µ)| . (24)

Direct calculation of�f(⇠;µ) and �T f(⇠;µ) from Fig. 2
gives

�f
(1)(⇠;µ) = a�(µ)(1 � ⇠)


(mq + ⇠mp)2

�(⇠)2

� ln

✓
µ
2

�(⇠)2

◆
+ 1

�
, (25)

and

�T f
(1)(⇠;µ) = a�(µ)(1 � ⇠)


(mq + ⇠mp)2

�(⇠)2
� 1

�
, (26)

in the MS scheme. The �1 arises in Eq. (26) from an
angular integral in dimensional regularization. In this
calculation, we have used the HVMB scheme [32, 33] for
dealing with the �5 factors since this is overwhelmingly
the standard in pQCD calculations. Thus,

�f(⇠;µ) + f(⇠;µ) = 2a�(µ)(1 � ⇠)
(mq + ⇠mp)2

�(⇠)2
(27)

and

2 |�T f(⇠;µ)| = 2a�(µ)(1 � ⇠)

����
(mq + ⇠mp)2

�(⇠)2
� 1

���� . (28)

Now if the masses are such that ms � mq,mp, then for
fixed ⇠

�f(⇠;µ) + f(⇠;µ) ⇡ 0 (29)
and

2 |�T f(⇠;µ)| ⇡ 2a�(µ)(1 � ⇠) . (30)

Therefore, the So↵er bound in Eq. (24) is violated, and
in this example the violation is not avoided by taking µ

large.

=) Jan 11: TR - Ended here.

VI. DISCUSSION

Fill in later....

Appendix A: DIS factorization of the Yukawa model.

In this appendix, we fill in some of the steps leading
to Eq. (19) and the plots of FIGURE. Employing the
definition of the bare fermion pdf in Eq. (17) and directly
expanding Eq. (18) with MS renormalization gives both
the fp/p and fq/p pdfs at order a�:

MJ
ren .
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• Cross sections
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Transverse momentum in correlation functions and 
in cross sections



• Large PT , insensitive to 
intrinsic parton transverse 
momentum.

Collinear factorization and 
evolution (DGLAP, etc)

• Small PT , access to intrinsic 
parton transverse momentum

TMD factorization, 
TMD evolution, Sudakov, etc
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�(s, b) = 1� exp [��h(s, b; p
c

t
)� �s(s, b; p

c

t
) + · · · ] (25)

�h(s, b; p
c

t
) (26)

d�

dq2
T

(27)

qT (28)

q2 ⇠ Q2 � ⇤
2

QCD
(29)

qT ⇠ ⇤QCD (30)

⇤QCD ⌧ k1T ⌧ Q (31)

qT ⌧ Q (32)

P (33)

k̂ + q (34)

X

Semi-inclusive deep inelastic scattering 
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• Large PT , insensitive to 
intrinsic parton transverse 
momentum.

Collinear factorization and 
evolution (DGLAP, etc)

• Small PT , access to intrinsic 
parton transverse momentum

TMD factorization, 
TMD evolution, Sudakov, etc
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Transverse momentum dependence and factorization
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TMD factorization
6" ~ 5

collinear factorization
(Small ⁄9 6")
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Transverse momentum dependence and factorization
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TMD factorization
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collinear factorization
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Transverse momentum dependence and factorization
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X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Phys. Rev. D73, 094017 (2006)
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• There is an overlapping collinear/TMD description for ! ≪ #: ≪ $

Extra scales for TMD evolution

For single-spin asymmetries:
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Integrated observables

• Unpolarized
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Integrated observables

• Unpolarized
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Integrated observables

• Unpolarized, approximated
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Integrated observables

• Unpolarized, approximated
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• !! ≈ # outside the region where TMD factorization is 
applicable

• Still needed for TMD pdf identification

• Exact Ο(&") cross section is easy to calculate
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p

q

k
p

q k + q

p

q

k

(a) (b) (c)

FIG. 1: Contributions to DIS from Eq. (16) at O (↵ a�). Graph (a) is the handbag diagram that contributes at leading power

and small transverse momentum. Graphs (b) and (c) contribute at leading power to large kT (the Hermitian conjugate for (c)

is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).

where cWµ⌫
f/f 0(x/⇠, q) is a partonic structure tensor for a massless, on-shell partonic target of flavor f 0, ff 0/p(⇠;µ) is a

pdf for a parton flavor f 0 in target p, µ is a renormalization group scale, and
P

f,f 0 is a sum over all flavors. The last
line defines the usual convolution notation:

A⌦B ⌘
Z 1

x

d⇠

⇠
A(x/⇠)B(⇠) . (13)

The analogous expressions for structure functions are

F1(x,Q
2) =

X

f,f 0

Z 1

x

d⇠

⇠
F̂1,f/f 0(x/⇠, µ2

/Q
2;µ)ff 0/p(⇠;µ) +O

�
m

2
/Q

2
�

(14)

=
X
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�
m

2
/Q

2
�
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F2(x,Q
2) =
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f,f 0
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x
d⇠F̂2,f/f 0(x/⇠, µ2

/Q
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(15)

=
X

f,f 0

⇠F̂2,f/f 0 ⌦ ff 0/p +O
�
m

2
/Q

2
�
.

In the limit that O
�
m

2
/Q

2
�
terms are negligible, the structure functions have process-specific parts, F̂1,2, and pdfs,

ff 0/p, that are intrinsic to the target. The separation and identification of these pieces when m
2 ⌧ Q

2 is the
factorization we aim to illustrate in Secs. V–VI.

III. MASSIVE SCALAR YUKAWA THEORY

We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1/2 “quark” field  q with mass mq, and a zero charge scalar “diquark” or “gluon” state � with a mass
ms. The numerical value of � fixes the strength of this interaction. We will find it useful to use the notation

a�(µ) ⌘
�
2

16⇡2
, (17)

in analogy with similar notation, as = g
2
s/(16⇡

2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1

1 This was done in [1], so we do not discuss the details further here.
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FIG. 1: Contributions to DIS from Eq. (16) at O (↵ a�). Graph (a) is the handbag diagram that contributes at leading power

and small transverse momentum. Graphs (b) and (c) contribute at leading power to large kT (the Hermitian conjugate for (c)

is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).
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P

f,f 0 is a sum over all flavors. The last
line defines the usual convolution notation:

A⌦B ⌘
Z 1

x

d⇠

⇠
A(x/⇠)B(⇠) . (13)

The analogous expressions for structure functions are

F1(x,Q
2) =

X

f,f 0

Z 1

x

d⇠

⇠
F̂1,f/f 0(x/⇠, µ2

/Q
2;µ)ff 0/p(⇠;µ) +O

�
m

2
/Q

2
�

(14)

=
X

f,f 0

F̂1,f/f 0 ⌦ ff 0/p +O
�
m

2
/Q

2
�
,

F2(x,Q
2) =

X

f,f 0

Z 1

x
d⇠F̂2,f/f 0(x/⇠, µ2

/Q
2;µ)ff 0/p(⇠;µ) +O

�
m

2
/Q

2
�

(15)

=
X

f,f 0

⇠F̂2,f/f 0 ⌦ ff 0/p +O
�
m

2
/Q

2
�
.

In the limit that O
�
m

2
/Q

2
�
terms are negligible, the structure functions have process-specific parts, F̂1,2, and pdfs,

ff 0/p, that are intrinsic to the target. The separation and identification of these pieces when m
2 ⌧ Q

2 is the
factorization we aim to illustrate in Secs. V–VI.

III. MASSIVE SCALAR YUKAWA THEORY

We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
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2
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2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will
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1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1
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FIG. 2: Example calculations of F1(x,Q) and F1,fact(x,Q) calculated in the Yukawa theory. The solid curves are the exact

calculation (the graphs in Fig. 1) and the dashed curves are the factorized calculation in Eq. (52). For the largest values of Q,

the distinction between the factorized and exact curves becomes invisible.

Dropping the O
�
m

2
/Q

2
�
and O

�
a
2
�

�
in Eq. (51), we can define the factorized approximation to the O (a�):

F
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1,fact(x,Q) ⌘
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⌘2 � ln
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9
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>;
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⇥

⇥
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+ ln
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µ
2

�(⇠)2
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� 1

�
�fq

�
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ff/p(⇠;µ)

. (52)

So

F
(1)
1 (x,Q) = F

(1)
1,fact(x,Q) +O

✓
m

2

Q2

◆
(53)

for any x away from elastic scattering, x = 1.
The validity of the factorization above, as an approximation with errors strongly suppressed by powers of m2

/Q
2,

is confirmed in direct comparisons between the exact calculation of F
(1)
1 (x,Q) and the approximate F

(1)
1,fact(x,Q)

calculated with Eq. (52). (By an exact calculation of F (1)
1 (x,Q), we mean an direct calculation of the graphs in

Fig. 1 with no approximations.) Fig. 2 shows numerical results for F
(1)
1 (x,Q) and F

(1)
1,fact(x,Q) as a function of x

for a range of Q and with mp = ms = .938 GeV and mq = .3 GeV. These numerical values are chosen to represent
typical hadronic mass scales and a typical bound state quark mass, and to get a transition to factorizable kinematics
at around Q = 1 GeV. Some features to note are the following: The exact results have a sharp kinematical upper
bound on x (see the blue curve for Q = 1 GeV) while the factorized expressions are real for all x < 1. The transition
to the region where factorization works tends to be slower at large x, due to the 1/(1 � x) factors in Eq. (52). The
large Q Q-dependence is logarithmic, and this can be seen in the weak variation between the curves for largest values
of Q.
The e↵ect of the factorization approximation is easier to visualize on a graph of the percent error itself, defined as

Percentage Error = 100%

����1�
F1,fact(x,Q)

F1(x,Q)

���� . (54)

13

let us implement them anyway by choosing µ = Q
4 in Eq. (51):
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+O
�
a�(Q)2

�
+O

�
m

2
/Q

2
�
. (55)

Looking inside the F̂1,q/f (x/⇠, 1; a�(Q)) expression hints at what happens in the QCD case: The powers of the coupling
coupling vanishes as Q � ⇤QCD while the coe�cients remain fixed (for fixed x), and a good fixed order perturbative
treatment of the partonic structure function is obtained. In an asymptotically free theory like QCD, this justifies
viewing partonic quarks and gluons as the relevant degrees of freedom for the short distance, partonic part of the
interaction.

In the pdf, Eq. (55) again hints at what happens. In ff/p(⇠;Q), the logarithm diverges as Q grows much larger
than intrinsic mass scales like �(⇠). So with the above choice for µ, despite the smallness of as(Q) (in the QCD
version), a truncated perturbative treatment is almost certainly not reasonable in the large Q limit. If one instead
tries a small scale like µ = �(⇠) to eliminate these large logarithms, then the as(µ) becomes large due to the strong
coupling of QCD at small scales. So renormalization group improvement does not appear to help in providing a reliable
perturbative treatment of the pdf. That should not be surprising given that the pdf deals with large scale structure
where QCD is non-perturbative. Fortunately, however, the factorization derivation tells exactly what f/p(⇠;Q) is
to arbitrary order in a�(Q) (it is Eq. (23)) and this justifies simply replacing the third line of Eq. (55) by a non-
perturbative calculation of Eq. (23) using specifically non-perturbative techniques. Alternatively, if the same Eq. (23)
appears in factorization theorems for multiple experimental observables, it can be extracted from one observable and
be used in calculations for another. This is what is meant by the common assertion that pdfs are universal.

Note that the last strategy for using factorization is complicated by the fact that the pdf is not completely universal
due to its dependence on µ, and the optimal value of µ is process specific. For example, say that the ff/p(⇠;Q1) above
is extracted from a measurement perform with Q1. The renormalization group improvement in QCD implies that we
use µ = Q1 in the factorization formula. However, say that we then wish to use the result to make a prediction for a
measurement at another value, say Q2. In the second of these experiments, renormalization group improvement again
prescribes µ = Q2. However, the two pdfs ff/p(⇠;Q1) and ff/p(⇠, Q2) will di↵er by terms with powers of ⇠ ln(Q2

2/Q
2
1),

and these terms can be non-negligible if Q1 and Q2 are very di↵erent. Fortunately, there is a renormalization group
equation for Eq. (23) that relates di↵erent values of µ via a perturbatively well-behaved kernel, and can be derived
by considering the properties of the renormalization factors like the Z in Eq. (23) under changes in µ. In QCD, this
results in the DGLAP evolution equation.

VIII. EXTENSION TO TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION

The above results provide an easy way to demonstrate some of the subtleties that can arise when extending
factorization beyond the collinear case. Let us see how the same steps can be used to describe the semi-inclusive cross
section:

proton(pµ) + �
⇤(qµ) �! quark(pµB) +X (56)

4 Generally, the proportionality between µ and Q can be di↵erent from 1, i.e. µ = CQ with C being a numerical constant. We have used
1 for simplicity.

Effect from integrating '! → ∞ cancels 

4# ), 5 =

Partonic 
structure 
functionParton

Distribution
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di↵erential in the transverse momentum of the final state quark. Instead of Eq. (1), consider

E
0
p
0
B

d�

d3l0d3pB
= E

0
z

d�

d3l0d2kTdz
, (57)

where pB = k + q and

z ⌘ p · pB
p · q (58)

is the usual kinematical z-variables of SIDIS. The basic steps in Secs. V–VI for factorizing the inclusive integrated
cross section continue to apply for the di↵erential SIDIS cross section in the Yukawa model, but with the integrals
over transverse momentum left undone. In this form, it is a version of transverse momentum dependent (TMD)
factorization, although with a trivial fragmentation function (see below).

To identify the usual TMD-factorization structure, note that the kT-di↵erential structure function in Eq. (37) can
be reexpressed in the following specific form

F (1)
1 (x, kT, Q) =

Z
dz

z
F

W
1 (x, z,kT, Q) + F

Y
1 (x, z,kT, Q) +O

�
m

2
/Q

2
�
. (59)

Now we will isolate and discuss each term in Eq. (59) separately and in detail. The second term in Eq. (59) is the
second term in Eq. (37) and it can be evaluated explicitly by subtracting Eq. (46) from (the integrand of) Eq. (45).
It accounts for the very large transverse momentum, highly o↵-shell (k2 ⇠ Q

2), contribution to the cross section.
Transverse momentum dependence in this region is a property of the specific SIDIS subprocess, not an internal
intrinsic property of the incoming or outgoing particles. One way to see this is from the fact that, at large kT, the
x, z, and kT dependence does not factorize when non-trivial fragmentation is included. Note, for example, the lowest
order calculation of SIDIS in QCD for large transverse momentum in Eqs.(B2-B4) of [3] and how the x, z and Q

dependence does not separate into independent terms. In the integral over kT to get collinear factorization, the
second term in Eq. (59) contributes to a higher order correction to the hard partonic F̂1,q/f (x/⇠, µ/Q; a�(µ)) – the
second term on the second line of Eq. (51). (That the transverse momentum is large means it is ideal for treatment
within perturbative calculations in the QCD version where asymptotic freedom can be exploited, particularly in the
calculation of the kT dependence itself.)

By contrast, the first term in Eq. (59) involves low, non-perturbative kT behavior. However, it can be understood in
terms of transverse momentum dependent (TMD) parton distribution and fragmentation functions. It can be written
as

F
W
1 (x, z,kT, Q) = F̂

W
1

Z
d2k1Td

2k2T�
(2)(k1T + kT � k2T)f(x,k1T;µ)d(z, zk2T;µ) , (60)

where

F̂
W
1 =

1

2
(61)

is a zeroth order hard partonic F1 and

f(x,k1T;µ) =
a�(µ)

⇡

(1� x)
⇥
k
2
T + (mq + xmp)2

⇤
⇥
k2T + xm2

s + (1� x)m2
q + x(x� 1)m2

p

⇤2 , (62)

d(z, zk2T;µ) = �(1� z)�(2)(zk2T) , (63)

follow exactly from well-known operator definitions for TMD pdfs and TMD ↵s at O
�
a
1
�

�
and O

�
a
0
�

�
respectively.

Substituting Eq. (62) and Eq. (63) into Eq. (60) and integrating over z in Eq. (59) confirms that Eq. (60) reproduces
Eq. (39). Equation (60) has the following very nice classical probabilistic interpretation: The complete F

W
1 is the

probability density f(x,k1T;µ) to find a quark with longitudinal momentum fraction x and transverse moment
k1T inside the proton target, times the probability density d(z, zk2T;µ) that an outgoing quark carries momentum
fraction z and transverse momentum k2T relative to a final quark, times a parton sub-scattering structure function
F̂

W
1 , integrated over all undetermined momentum fractions.
The correct TMD pdf definition is the obvious generalization of the collinear pdf in Eq. (22) to the TMD case, just

with a Fourier transform over transverse as well as collinear components:

ff/h(⇠,kT) =

Z
dw�d2wT

(2⇡)3
e
�i⇠P+w�+ikT·wT hP |  ̄f (0, w

�
,wT)

�
+

2
 f (0, 0,0T) |P i . (64)
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dependence does not separate into independent terms. In the integral over kT to get collinear factorization, the
second term in Eq. (59) contributes to a higher order correction to the hard partonic F̂1,q/f (x/⇠, µ/Q; a�(µ)) – the
second term on the second line of Eq. (51). (That the transverse momentum is large means it is ideal for treatment
within perturbative calculations in the QCD version where asymptotic freedom can be exploited, particularly in the
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By contrast, the first term in Eq. (59) involves low, non-perturbative kT behavior. However, it can be understood in
terms of transverse momentum dependent (TMD) parton distribution and fragmentation functions. It can be written
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follow exactly from well-known operator definitions for TMD pdfs and TMD ↵s at O
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Substituting Eq. (62) and Eq. (63) into Eq. (60) and integrating over z in Eq. (59) confirms that Eq. (60) reproduces
Eq. (39). Equation (60) has the following very nice classical probabilistic interpretation: The complete F
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1 is the

probability density f(x,k1T;µ) to find a quark with longitudinal momentum fraction x and transverse moment
k1T inside the proton target, times the probability density d(z, zk2T;µ) that an outgoing quark carries momentum
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FIG. 4: The solid blue curve is a repeat of the x = .3 curve in Fig. 3, while the red dashed curve is the percent error in the

classical probabilistic model (also called the TMD parton model) in Eq. (66). See Eq. (70).

The GPM as represented by Eq. (65) to Eq. (68) is obtained within the Yukawa toy theory simply by dropping the
Y -term in Eq. (59). If it is a good approximation, then it should show suppression in the large Q limit similar to
what is seen in Fig. 3 but with

Percentage Error = 100%

�����1�
F

Eq. (65)
1 (x,Q)

F1(x,Q)

����� (70)

instead of Eq. (54). Taking x = .3 as typical for the valence region, we show Eq. (54) and Eq. (70) in Fig. 4 using the
same mp = ms = .938 GeV and mq = .3 GeV as in Fig. 2 and Fig. 3. As expected, the classical probabilistic model
is significantly less accurate than the fully factorized calculation. More importantly, Eq. (70) contains errors that
remain unsuppressed as Q increases, so the problem of the larger error in Eq. (65) is not mitigated by going to larger
Q. In QCD there is also no power suppression, but only the very weak logarithmic suppression from the decreasing
size of ↵s.

Despite the above, the assumption that TMD-factorized quantities reduce to collinear factorization upon integration
over transverse momentum (Eq. (65)) is very widespread in the literature on TMD functions, to the point that it
is often treated as a pseudo-theorem. It is sometimes implied that e↵ective relations analogous Eqs. (67)–(68) can
be recovered through a carefully chosen regularization program. The reason this is not possible in general, as the
above discussion is intended to make clear, is that the divergences in the kT-integrals are from regions beyond of kT
where kT-dependence factorizes into a TMD pdf, a hard part, and a TMD ↵, and this needs to be incorporated into
any cuto↵ procedure the recovers the full collinear factorization cross section. For example, if a cuto↵ regulator in
Eq. (65) is to be applied in such a way as to eliminate the need for a Y -term, then it must be cuto↵ with intertwined
x, z, and Q dependence. Then, however, Eq. (65) would not factorize (the µc in Eq. (69) would have z-dependence,
for example). The combination of both the W and Y terms on the right side of Eq. (60) is not divergent at all when
integrated over kT, and the integral directly reproduces exactly the collinear factorization result in Eq. (51), as can
easily be checked in the Yukawa example. The divergent behavior at kT ! 1 cancels between the two terms, showing
that the restoration of regulator independence requires physics from beyond what is TMD-factorizable. Work is still
need to determine if and how these corrections the di↵erence between collinear and integrated TMD functions can be
incorporated through perturbatively calculatable corrections.
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)"*
(") #

cutoff
− 1

G H #
MS renorm

~ L-# 8& ln#
8&#
0#

7

p

k + q q k + q

p

q

(a) (b)

FIG. 2: (a) Lowest order pole part of the twist-3 quark-gluon correlation function. (b) Lowest order TMD Sivers function. The
calculations are nearly identical up to the overall �1/2M , the factor of k2

T , and the integral over transverse momentum in the
case of the twist-3 quark-gluon correlation function.

mq of the form

�f?
1T (kc ⇠ µ)

= �CFNc

2⇡
↵s(µ)

2x(1� x) ln2
✓

µ

(1� x)mq

◆
+ · · · .

(13)

The “· · · ” refers to all other terms not involving double
logarithms of the form ln2(µ/mass).

To see that this creates complications, consider
Eq. (12) expanded through the first several orders,

M�f?
1T (kc) =X

ij

C(2)
ij

(x/x0, L,↵s(µ))⌦ T (0)
j(g)/H(x;µ)

+
X

ij

C(1)
ij

(x/x0, L,↵s(µ))⌦ T (1)
j(g)/H(x;µ)

+
X

ij,b

mb,ijC(2)
b,ij

(x/x0, L,↵s(kc))⌦ h(0)
b,j/H

(x;µ)

+
X

ij,b

mb,ijC(1)
b,ij

(x/x0, L,↵s(kc))⌦ h(1)
b,j/H

(x;µ)

+ h.o. +O

 
⇤2
QCD

k2
c

!
, (14)

with the (...) superscripts denoting the order in perturba-
tion theory. If Eq. (12) were true, then one of these terms
must contain the double logarithm in Eq. (13). But

T (1),?
j(g)/H(x;µ) = T (0),?

j(g)/H(x;µ) = 0 , (15)

because at least two gluons (a spectator and a final state
interaction) are needed for the correlation function to be
nonzero. So if Eq. (14) could accommodate Eq. (13),
then the ↵2

s
ln2(µ/((1� x)mq)) would have to appear in

either the fourth or fifth lines. However, the order-↵0
s

h(0)
b,i/H

(x;µ) and the order-↵1
s
h(1)
b,i/H

(x;µ) can contain at

most zero and one ln(µ) factors respectively. This means
at least one power of ln (µ/((1� x)mq)) would have to be

included inside C(2)
b,ij

or C(1)
b,ij

. If this were done, however,
it would violate the requirement that no logarithms other

than the mass-independent Eq. (8) appear in the hard C-
coe�cients. This shows that the factorization in Eq. (14),
and therefore Eq. (12) generally, is invalid.
An equivalent and more direct way to state the above

is simply to note that since the coupling only vanishes
like ↵s(µ) ⇠ 1/ ln(µ) for µ � ⇤QCD, then the term in
Eq. (13) undergoes no suppression at large µ.
It should be understood that, since the correlation

functions are strictly speaking nonperturbative, the mass
scales like the mq in Eq. (13) represent more general non-
perturbative structures. In some ways, therefore, a model
renormalizable diquark spectator theory is more illustra-
tive of the problem described above, since mass scales
like the mq in Eq. (13) become more complicated non-
perturbative objects.
It is possibly tempting to argue that in a proton tar-

get terms like Eq. (13) would be suppressed by mq/Mp

ratios. But this same ratio appears in all terms to all
orders in the correlation function, so there is no relative
suppression. This is especially, clear in other model theo-
ries like a spectator diquark theory – see Eqs. (A7)–(A9).
Thus, the double logarithm in Eq. (13) represents a kind
of strong ultraviolet ambiguity that did not arise in the
unpolarized case.
Furthermore, the fact that the double logarithm in

Eq. (13) goes to infinity as the collinear regulator is re-
moved, mq ! 0, signals that the two sides of Eq. (4) have
di↵erent collinear sensitivities (as kT ! 0) manifested by
the divergent kT -integration starting from its UV pertur-
bative region and using dimensional regularization. The
need to account for this divergent mq ! 0 behavior will
reappear in the treatment of the very large transverse
momentum (QT ⇠ Q) region of physical processes like
the Drell-Yan example in Sec. I.
Like in any QCD factorization approach to a physical

observable, perturbative calculations of short-distance
hard parts beyond the lowest order tree-level require per-
turbatively calculated and regularized partonic versions
of the long-distance correlation functions to remove all
soft and collinear divergences in the hard partonic scat-
tering. Since the moment of the Sivers TMD function
and the twist-3 correlation function in the two sides of
Eq. (4) have di↵erent collinear sensitivities, the use of the
long-distance correlation functions for QCD factorization
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nonzero. So if Eq. (14) could accommodate Eq. (13),
then the ↵2

s
ln2(µ/((1� x)mq)) would have to appear in

either the fourth or fifth lines. However, the order-↵0
s

h(0)
b,i/H

(x;µ) and the order-↵1
s
h(1)
b,i/H

(x;µ) can contain at

most zero and one ln(µ) factors respectively. This means
at least one power of ln (µ/((1� x)mq)) would have to be

included inside C(2)
b,ij

or C(1)
b,ij

. If this were done, however,
it would violate the requirement that no logarithms other

than the mass-independent Eq. (8) appear in the hard C-
coe�cients. This shows that the factorization in Eq. (14),
and therefore Eq. (12) generally, is invalid.
An equivalent and more direct way to state the above

is simply to note that since the coupling only vanishes
like ↵s(µ) ⇠ 1/ ln(µ) for µ � ⇤QCD, then the term in
Eq. (13) undergoes no suppression at large µ.
It should be understood that, since the correlation

functions are strictly speaking nonperturbative, the mass
scales like the mq in Eq. (13) represent more general non-
perturbative structures. In some ways, therefore, a model
renormalizable diquark spectator theory is more illustra-
tive of the problem described above, since mass scales
like the mq in Eq. (13) become more complicated non-
perturbative objects.
It is possibly tempting to argue that in a proton tar-

get terms like Eq. (13) would be suppressed by mq/Mp

ratios. But this same ratio appears in all terms to all
orders in the correlation function, so there is no relative
suppression. This is especially, clear in other model theo-
ries like a spectator diquark theory – see Eqs. (A7)–(A9).
Thus, the double logarithm in Eq. (13) represents a kind
of strong ultraviolet ambiguity that did not arise in the
unpolarized case.
Furthermore, the fact that the double logarithm in

Eq. (13) goes to infinity as the collinear regulator is re-
moved, mq ! 0, signals that the two sides of Eq. (4) have
di↵erent collinear sensitivities (as kT ! 0) manifested by
the divergent kT -integration starting from its UV pertur-
bative region and using dimensional regularization. The
need to account for this divergent mq ! 0 behavior will
reappear in the treatment of the very large transverse
momentum (QT ⇠ Q) region of physical processes like
the Drell-Yan example in Sec. I.
Like in any QCD factorization approach to a physical

observable, perturbative calculations of short-distance
hard parts beyond the lowest order tree-level require per-
turbatively calculated and regularized partonic versions
of the long-distance correlation functions to remove all
soft and collinear divergences in the hard partonic scat-
tering. Since the moment of the Sivers TMD function
and the twist-3 correlation function in the two sides of
Eq. (4) have di↵erent collinear sensitivities, the use of the
long-distance correlation functions for QCD factorization
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Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?
• TMD in integrated quantities?

47



Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?
• TMD in integrated quantities?

48



Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?

49



Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?

• How to merge collinear HT and TMD in integrated quantities?

50



Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?

51



Discussion

• Ultraviolet divergences in transversely-integrated quantities relate to:

– Identifying intrinsic versus process-specific effects
– Evolution

• Collinear pdfs: Positivity? 

• Does asymptotic freedom does always suppress errors to the naïve number density interpretation?

• When access to the intrinsic transverse momentum is the objective: 

– Limit transverse momentum in weighted integrals and use TMD evolution 

• How to merge collinear higher twist and TMD in integrated quantities?

52

Tha
nks

!



Lorentz Invariance Relations

• Divergences 
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2 &! 0#"(), $")

Mulders, Tangerman, Nucl. Phys. B461, 197 (1996)
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Divergent 
integral
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