Mapping Hadronic Structure at Small x

Matthew D. Sievert

Thomas Jefferson National Accelerator Facility

Nov. 5, 2018

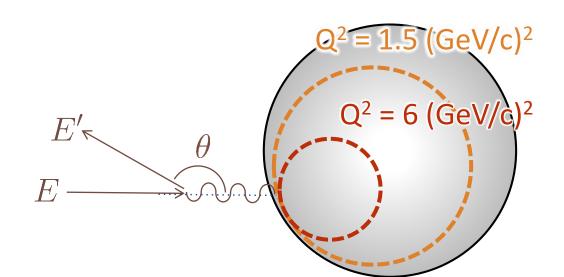
M. Sievert

What Do We Learn From Small x?

In DIS, Bjorken x measures the loffe
 "exposure time" of the virtual photon
 loffe, Phys. Lett. B30 (1969) 123

• The **small-x limit** is equivalent to the **high-energy limit** :

• **Time dilation** at higher energies can reveal **more ephemeral** quantum fluctuations



 $\sim \overline{mx}$

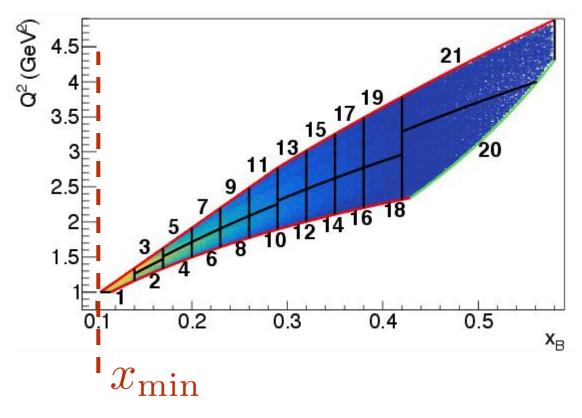
M. Sievert

The Limits of Finite Energy

• Any **finite-energy experiment** is limited to a **minimum value of x**

 There are always small-x tails of structure functions which are inaccessible to experiment

CLAS Collaboration, Phys. Rev. **C**98 (2018) 045203



M. Sievert

What Could be Hiding at Small x?

Hidden contributions to the proton spin budget

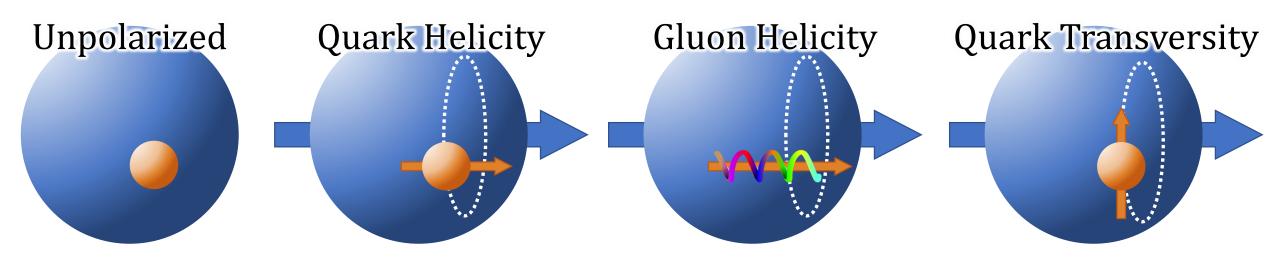
• Unitarization of QCD into a UV complete theory

• Exotic **gluon-dominated phase** of nuclear matter

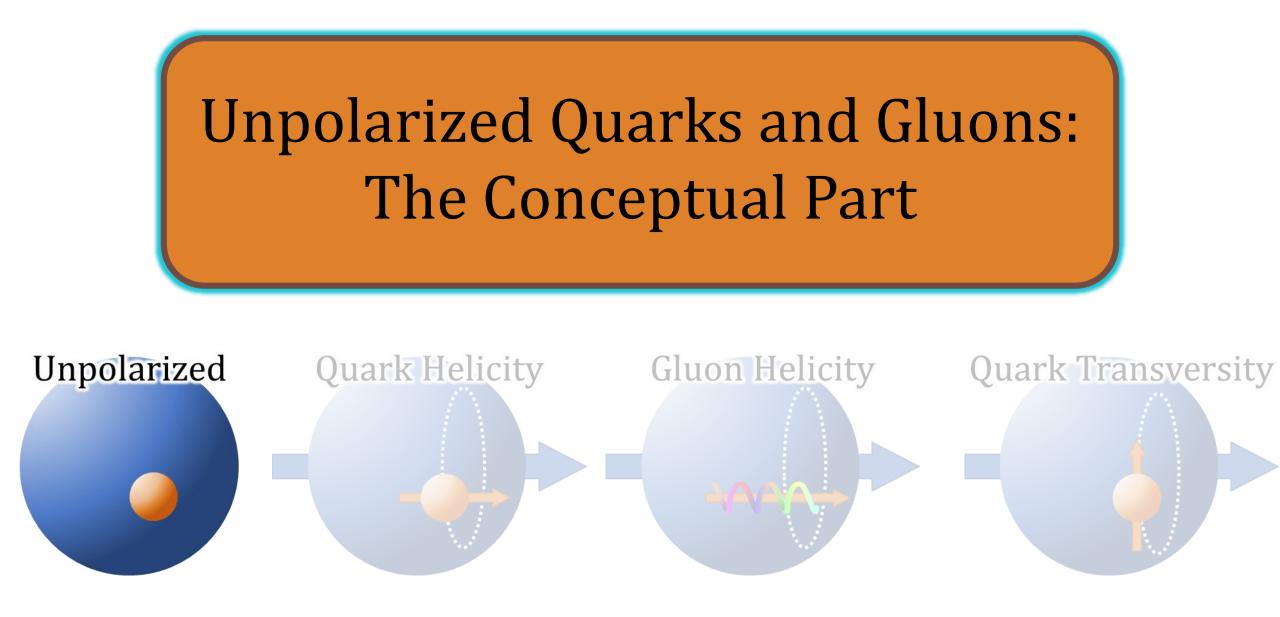
 Bridge between local operators calculated in lattice QCD and nonlocal structure functions measured in experiment

M. Sievert

Outline: Small-x Asymptotics



- 1. Unpolarized Quarks and Gluons
- 2. Quark Helicity
- 3. Gluon Helicity
- 4. Quark Transversity

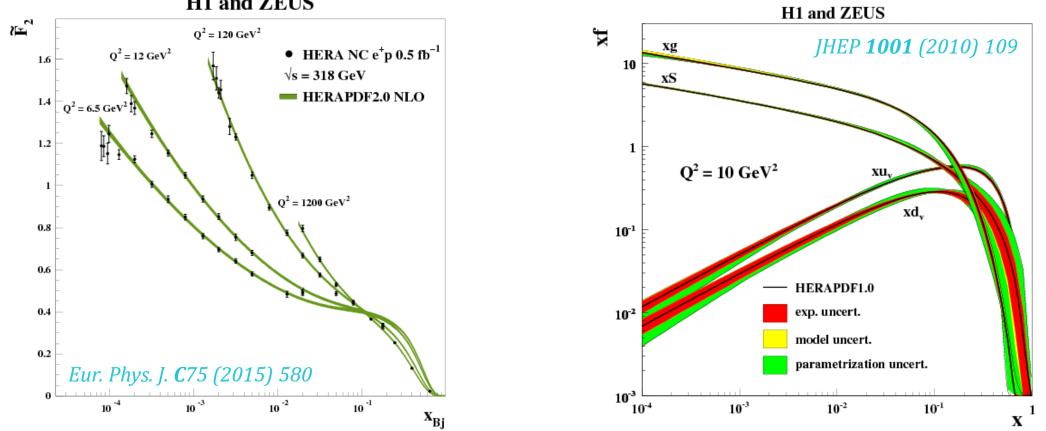


M. Sievert

Mapping Hadronic Structure at Small x

6 / 65

Unpolarized Structure Functions from HERA

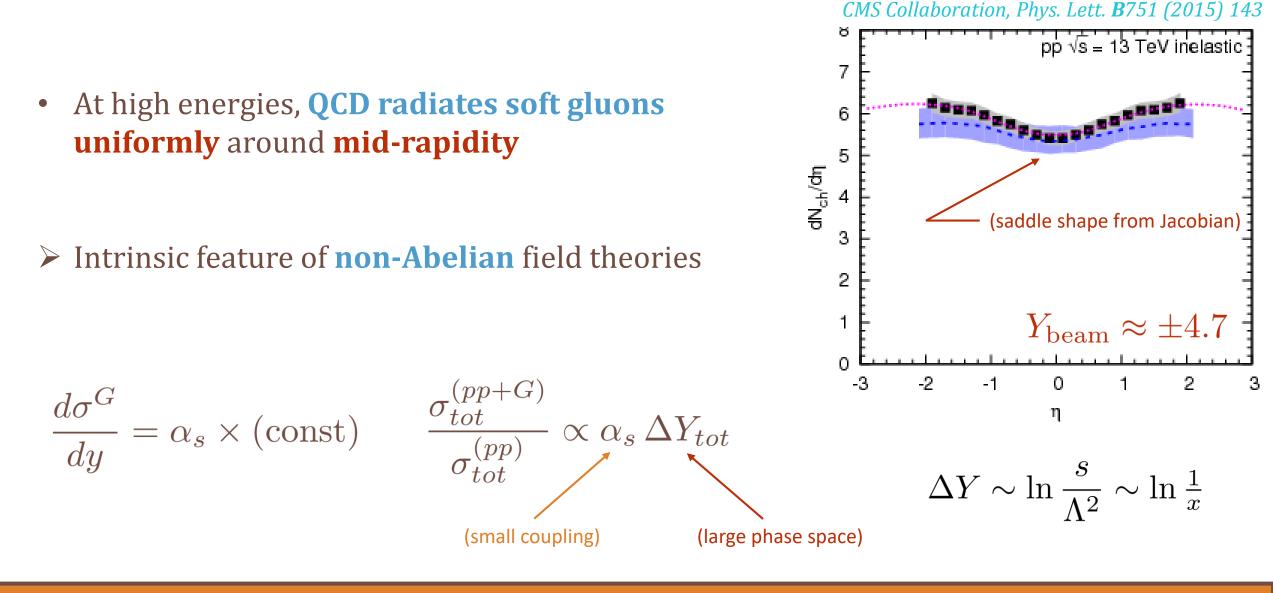


H1 and ZEUS

- At HERA, the proton structure functions **increase strongly at small x**
- Reflects a **power-law growth** of **gluon** and **sea quark densities** ullet

M. Sievert

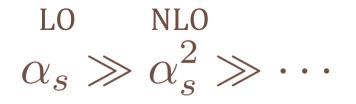
Non-Abelian Bremsstrahlung at High Energies

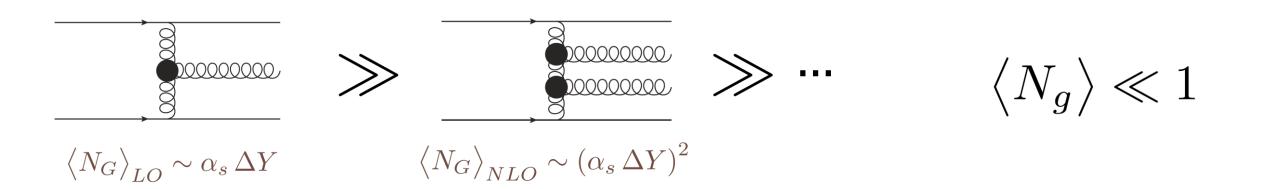


M. Sievert

A Large Phase Space for Soft Gluons

• Perturbation theory in pQCD relies on a **hierarchy of contributions**



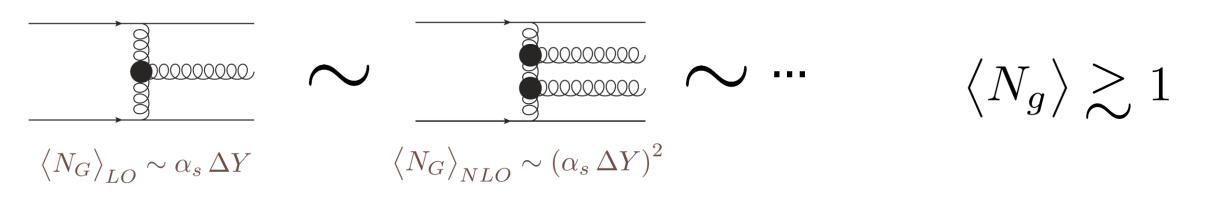


M. Sievert

A Large Phase Space for Soft Gluons

• Perturbation theory in pQCD relies on a **hierarchy of contributions**

LO NLO
$$(\alpha_s \Delta Y) \sim (\alpha_s \Delta Y)^2 \sim \cdots$$



 At high energies (small x), the large logarithmic phase space enhances the probability of soft gluon radiation

```
\Delta Y \sim \ln \frac{1}{x}\alpha_s \ln \frac{1}{x} \sim \mathcal{O}(1)
```

M. Sievert

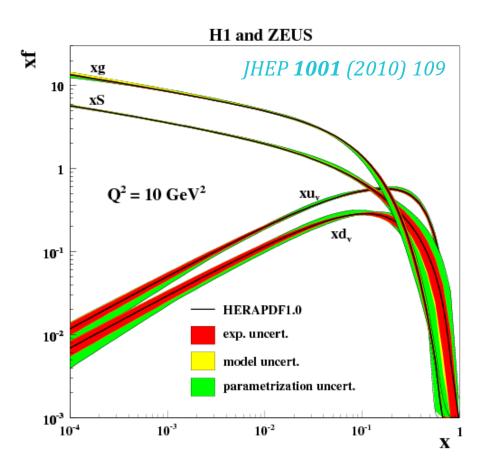
The Small-x Gluon Cascade

 Recast the systematic enhancement as a differential equation

Power-law growth of the gluon density at small x

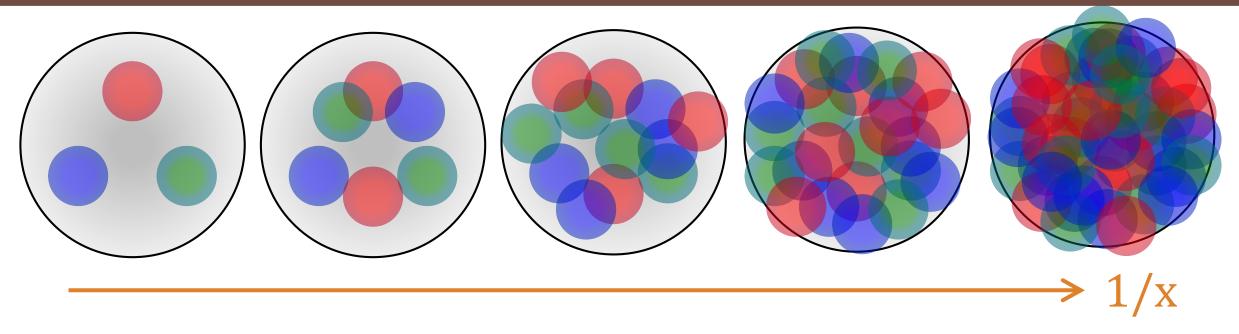
Kuraev, Lipatov, and Fadin, Sov. Phys. JETP **45** (1977) 199 *Balitsky and Lipatov, Sov. J. Nucl. Phys.* **28** (1978) 822

$$\langle N_G \rangle \sim \left(\frac{1}{x}\right)^{(2.65\,\alpha_s)}$$
 "Pomeron Intercept"



M. Sievert

Color Screening at High Densities



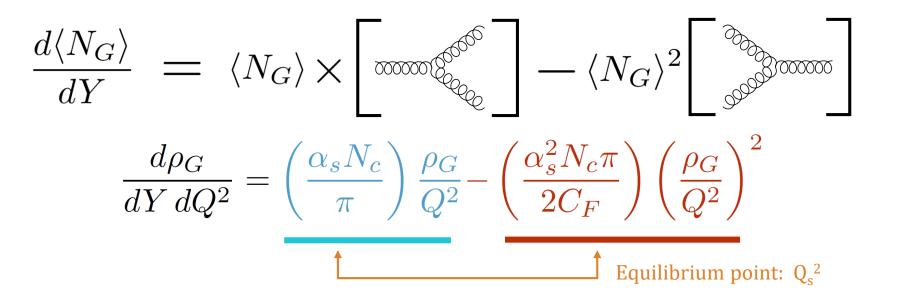
- Emission of many gluons with random colors: dynamical color screening
- The size of **coherent color domains shrinks** as we approach **small x**
- The growing color charge density defines an emergent length scale

M. Sievert

An Emergent Saturation Scale

- At high enough densities, gluon recombination competes with bremsstrahlung
 - **Saturation** of the gluon density

L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rept. **100** (1983) 1 A. H. Mueller and J. W. Qiu, Nucl. Phys. **B268** (1986) 427



• The saturation momentum scale grows with the density

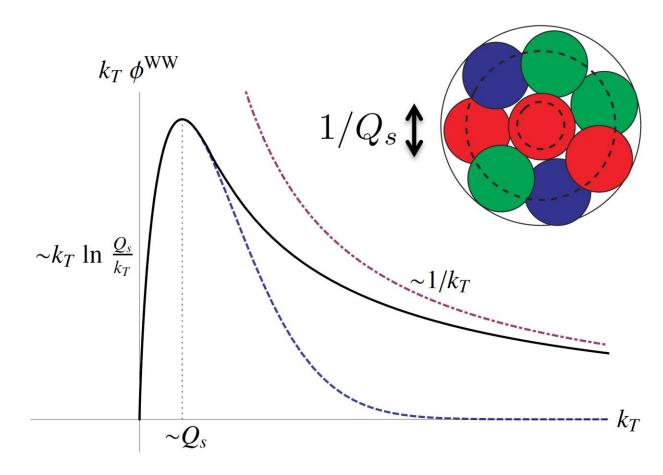
 $Q_s^2(Y) \sim \alpha_s \,\rho(Y)$

The Perturbative High-Density Limit

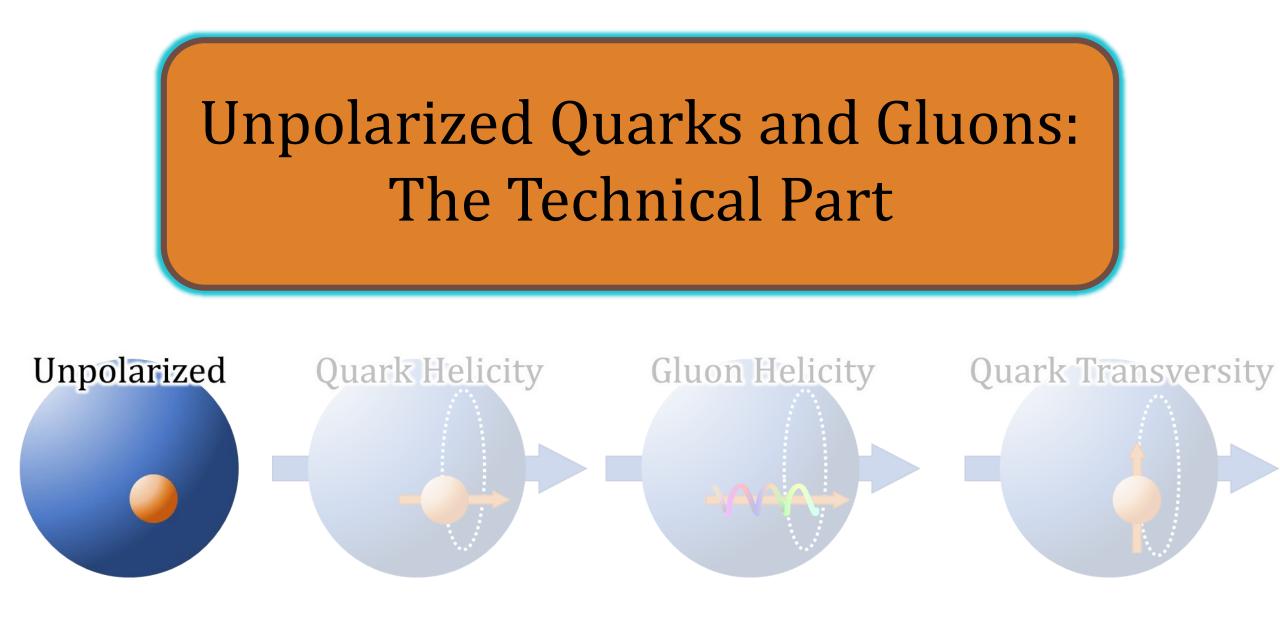
Parton transverse momentum distributions are dynamically screened below Q_s

 If the density is large enough that Q_s becomes a (semi)hard scale, the dynamics become perturbative

• With high energies and heavy nuclei, a future **Electron-Ion Collider** may peek into this regime.



M. Sievert



M. Sievert

Mapping Hadronic Structure at Small x

15 / 65

Factorization: Quark Knockout at Moderate x

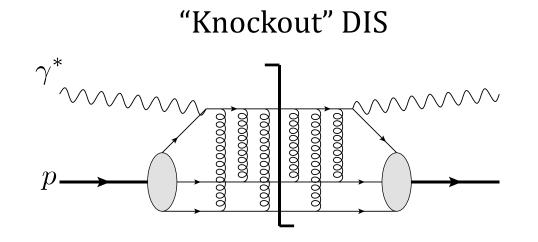
 Collinear (or TMD) factorization provides a one-to-one correspondence between the (SI)DIS cross section and hadronic structure: PDFs / TMDs

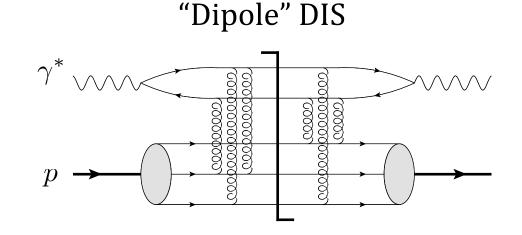
M. Sievert

Mapping Hadronic Structure at Small x

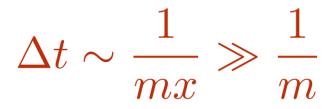
16 / 65

Dipole DIS at Small x





• At small x, the lifetime of the DIS photon becomes much larger than the size of the proton



• Photon fluctuates into a long-lived $q\bar{q}$ dipole when then scatters on the proton

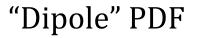
M. Sievert

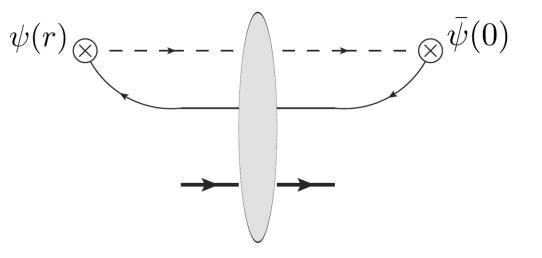
Wilson Lines: Propagators in a Background Field

The **PDF operator** also looks different at small x (Note: Light-cone gauge A⁻ = 0)

> The proton is **Lorentz-contracted** to $\delta(x^-)$

The operators create / annihilate antiquarks instead, which propagate through the proton fields as Wilson lines





$$V_{\underline{x}} = \mathcal{P} \exp\left[ig \int dz^{-} \hat{A}^{+}(0^{+}, z^{-}, \underline{x})\right]$$

M. Sievert

From PDFs to Dipoles

• The PDF operator is reformulated in terms of **dipole scattering amplitudes**

$$xq_{f}(x,Q^{2}) = \frac{Q^{2}N_{c}}{4\pi^{2}\alpha_{EM}} \int \frac{d^{2}x_{10} dz}{4\pi z(1-z)} \sum_{L,T} \left|\Psi(x_{10}^{2},z)\right|^{2} \int d^{2}b_{10} \left[2 - \frac{1}{N_{c}} \left\langle \operatorname{tr}\left[V_{0}V_{1}^{\dagger}\right]\right\rangle_{(zs)} - \frac{1}{N_{c}} \left\langle \operatorname{tr}\left[V_{1}V_{0}^{\dagger}\right]\right\rangle_{(zs)}\right]$$
Photon splitting wave functions
Non-interacting terms
Dipole amplitudes

M. Sievert

Mapping Hadronic Structure at Small x

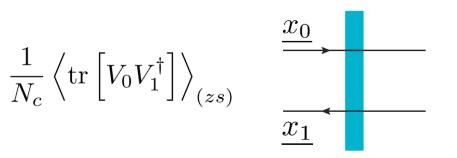
19/65

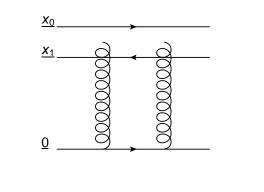
The Small-x Operator: The Dipole Amplitude

 The x-dependence of the PDF (TMD) is governed by the energy dependence of the dipole amplitude

 Arises from the phase-space enhanced quantum corrections in the background field of the proton

• The **initial conditions** can be taken from PDF fits at large x or, e.g.) the quark target model





$$\frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{\dagger} \right] \right\rangle_{(zs)}^{(0)} = \frac{2\alpha_s^2 C_F}{N_c} \ln^2 \frac{x_{0T}}{x_{1T}}$$

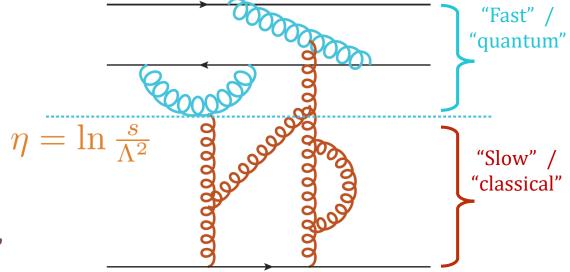
M. Sievert

Quantum Evolution in a Classical Background

• Quantum evolution is obtained through the **background field method**

$$A^{\mu}(x) = A^{\mu}_{\text{classical}}(x) + a^{\mu}_{\text{quantum}}(x)$$

- Abitrary rapidity cut η between "fast, quantum modes" and "slow, classical modes."
- Compute corrections from the "quantum" fields in the "classical" background if they cross the proton.
- **RG evolution** with respect to the **arbitrary cutoff** generates quantum evolution



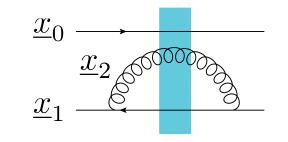
I. Balitsky, Nucl. Phys. **B463** (1996) 99 I. Balitsky, Phys. Rev. **D60** (1999) 014020 I. Balitsky and A. Tarasov, JHEP **1510** (2015) 017

M. Sievert

Types of Corrections: Real and Virtual

• "Real" gluon emissions propagate through the classical background of the proton

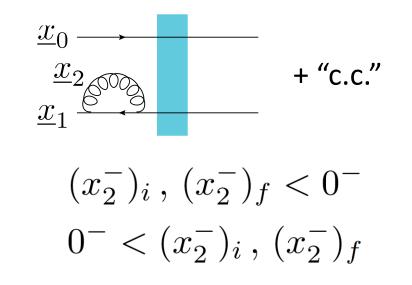
$$\frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 t^a V_1^{\dagger} t^b \right] U_2^{ba} \right\rangle_{(z's)}$$



 $(x_2^-)_i < 0^- < (x_2^-)_f$

• **"Virtual" gluon emissions** propagate through the **vacuum**

 $-\frac{C_F}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{\dagger} \right] \right\rangle_{(z's)}$

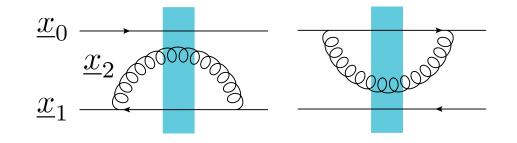


M. Sievert

Types of Corrections: Ladder and Non-Ladder

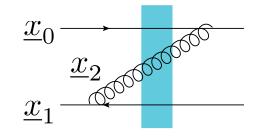
• **"Ladder" emissions** are emitted and absorbed by the same parton

$$\frac{\alpha_s}{\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int d^2 x_2 \left(\frac{1}{x_{21}^2} + \frac{1}{x_{20}^2}\right) \times \left[\text{operator}\right]$$



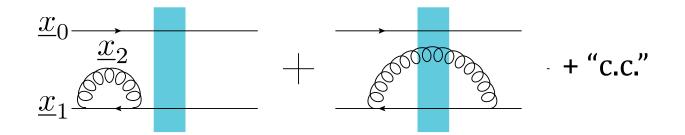
 "Non-ladder" emissions are emitted and absorbed by different partons

$$\frac{\alpha_s}{\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int d^2 x_2 \left(-2 \frac{\underline{x_{21}} \cdot \underline{x_{20}}}{x_{21}^2 x_{20}^2} \right) \times \left[\text{operator} \right]$$



M. Sievert

Color Transparency of Small Fluctuations



$$\frac{\alpha_s N_c}{2\pi^2} \int\limits_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int \frac{d^2 x_2}{x_{21}^2} \times \left[\frac{1}{N_c^2} \left\langle \operatorname{tr} \left[V_2 V_1^{\dagger} \right] \operatorname{tr} \left[V_0 V_2^{\dagger} \right] \right\rangle_{(z's)} - \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{\dagger} \right] \right\rangle_{(z's)} \right]$$

- "Ladder" emissions of small-sized fluctuations are enhanced
- Potentially divergent... a **second logarithm?**
- No: Cancellation of real + virtual diagrams due to color transparency

M. Sievert

The Balitsky Operator Hierarchy

$$\frac{1}{N_{c}}\left\langle \operatorname{tr}\left[V_{0}V_{1}^{\dagger}\right]\right\rangle_{(zs)} = \frac{1}{N_{c}}\left\langle \operatorname{tr}\left[V_{0}V_{1}^{\dagger}\right]\right\rangle_{(zs)}^{(0)} + \frac{\alpha_{s}N_{c}}{2\pi^{2}}\int_{z}^{z}\frac{dz'}{z'}\int d^{2}x_{2}\frac{x_{10}^{2}}{x_{20}^{2}x_{21}^{2}}\left[\frac{1}{N_{c}^{2}}\left\langle \operatorname{tr}\left[V_{2}V_{1}^{\dagger}\right]\operatorname{tr}\left[V_{0}V_{2}^{\dagger}\right]\right\rangle_{(z's)} - \frac{1}{N_{c}}\left\langle \operatorname{tr}\left[V_{0}V_{1}^{\dagger}\right]\right\rangle_{(z's)}\right]$$
Rapidity Logarithm
BFKL Kernel
New, more complex operator

- The dipole evolves into **increasingly complex operators**....
- Equivalent to a **functional differential equation**....

I. Balitsky, Nucl. Phys. **B463** (1996) 99 I. Balitsky, Phys. Rev. **D60** (1999) 014020

Jalilian-Marian et al., Phys. Rev. **D59** (1998) 014015 Jalilian-Marian et al., Phys. Rev. **D59** (1998) 014014 Iancu et al., Phys. Lett. **B510** (2001) 133 Iancu et al., Nucl. Phys. **A692** (2001) 583

M. Sievert

Dilute Limit: the BFKL Equations

• The equations **linearize** in the **dilute limit** (BFKL)

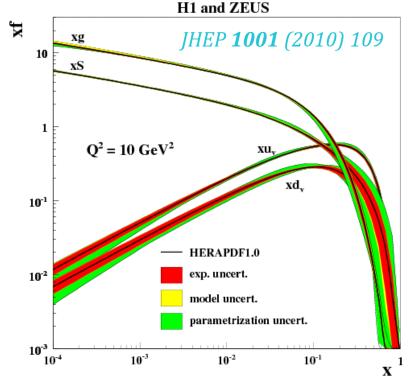
7

Kuraev, et al., Sov. Phys. JETP **45** (1977) 199 *Balitsky and Lipatov, Sov. J. Nucl. Phys.* **28** (1978) 822

$$\frac{\alpha_s N_c}{2\pi^2} \int\limits_{\frac{\Lambda^2}{s}} \tilde{\int} \frac{dz'}{z'} \int d^2 x_2 \frac{x_{10}^2}{x_{20}^2 x_{21}^2} \left\langle \frac{1}{N_c} \operatorname{tr} \left[V_2 V_1^{\dagger} \right] + \frac{1}{N_c} \operatorname{tr} \left[V_0 V_2^{\dagger} \right] - \frac{1}{N_c} \operatorname{tr} \left[V_0 V_1^{\dagger} \right] - 1 \right\rangle_{(z's)}$$
H1 and ZEUS

Leads to **power-law growth** in the PDFs at small x

$$xq(x,Q^2) \sim xG(x,Q^2) \sim \left(\frac{1}{x}\right)^{\frac{4\alpha_s N_c}{\pi} \ln 2}$$



M. Sievert

Mapping Hadronic Structure at Small x

26 / 65

The BFKL and BK Equations

• The operator **hierarchy closes** in **large-Nc limit** (BK)

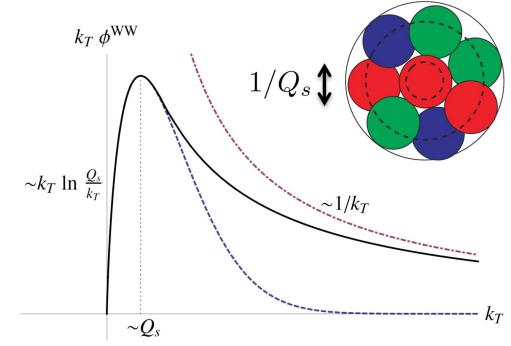
Balitsky, Nucl. Phys. **B463** (1996) 99 Balitsky, Phys. Rev. **D60** (1999) 014020 Kovchegov, Phys. Rev. **D60** (1999) 034008 Kovchegov, Phys. Rev. **D61** (2000) 074018

$$\frac{\alpha_s N_c}{2\pi^2} \int\limits_{\frac{\Lambda^2}{s}} \tilde{\int} \frac{dz'}{z'} \int d^2 x_2 \frac{x_{10}^2}{x_{20}^2 x_{21}^2} \left[\frac{1}{N_c^2} \left\langle \operatorname{tr} \left[V_2 V_1^{\dagger} \right] \right\rangle_{(z's)} \times \left\langle \operatorname{tr} \left[V_0 V_2^{\dagger} \right] \right\rangle_{(z's)} - \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{\dagger} \right] \right\rangle_{(z's)} \right]$$

Nonlinear gluon recombination leads to saturation of the small-x PDFs.

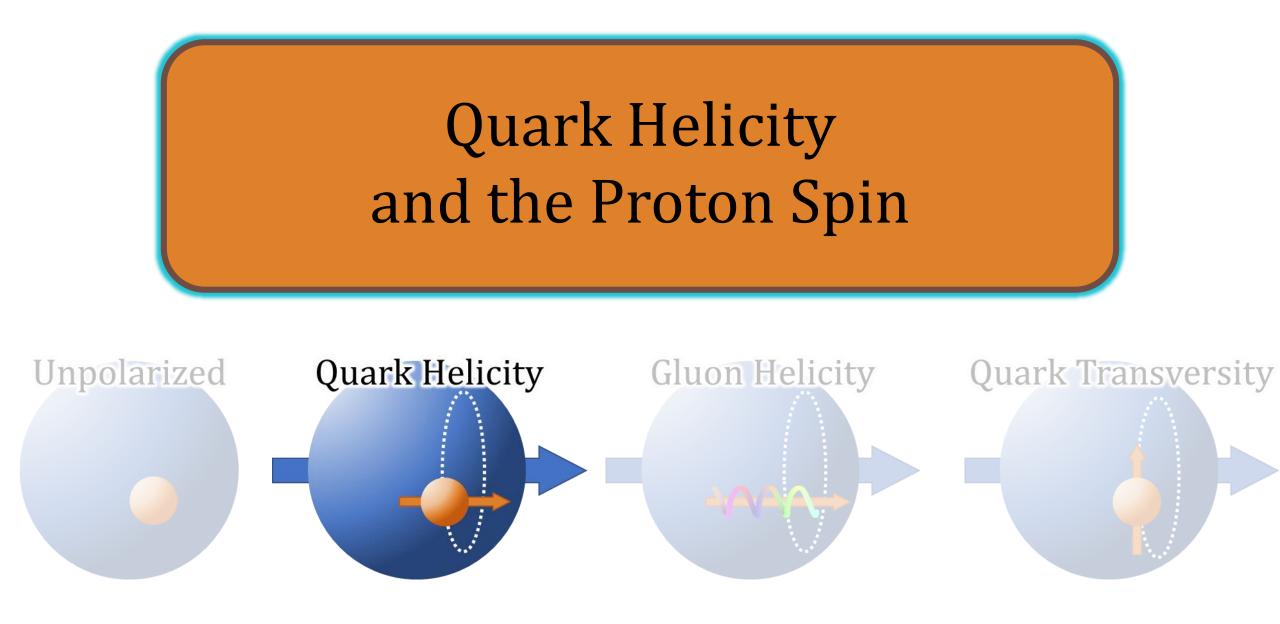
2

$$Q_s^2(x) \sim \left(\frac{1}{x}\right)^{0.3}$$



27 / 65

M. Sievert

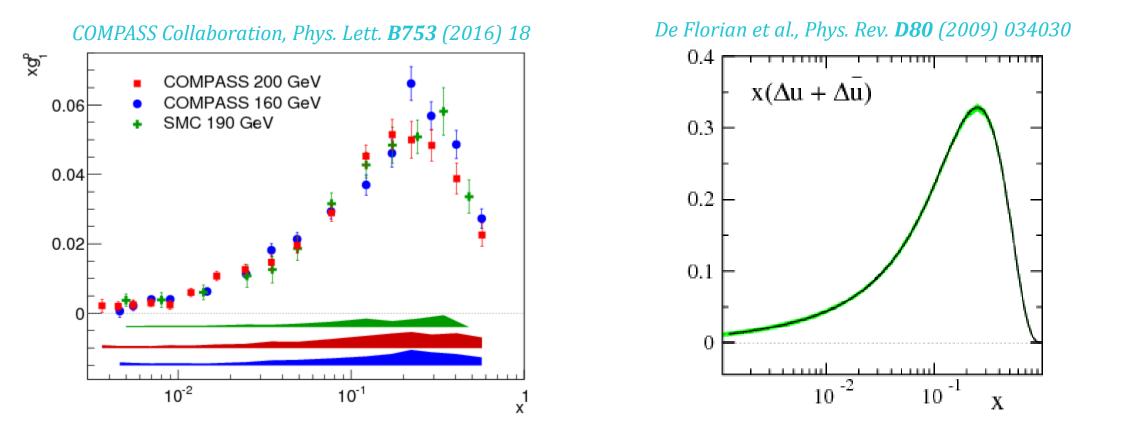


M. Sievert

Mapping Hadronic Structure at Small x

28 / 65

Quark Helicity: What Do We Know?



• **Polarized structure functions** are measured e.g.) by COMPASS and JAM

J. J. Ethier et al., Phys. Rev. Lett. **119** (2017) 132001

• The polarized structure functions **decay at small x**

M. Sievert

How Much Polarization is there at Small x?

A. Accardi et al., Eur. Phys. J. A52 (2016) 268 *E.-C. Aschenauer et al., Phys. Rev.* **D92** (2015) 094030 $\int_{x_{min}}^{1} dx \Delta \Sigma(x,Q^2)$ Current polarized DIS data: 10^{3} **EIC** projections: DSSV 2014 o CERN △ DESY ♦ JLab □ SLAC 90% C.L. band $\sqrt{s} = 77.5 \text{ GeV}$ DSSV 2008 Current polarized BNL-RHIC pp data: = 122.7 GeV 0% C.L. band $+\sqrt{s} = 141.4 \text{ GeV}$ • PHENIX π° **A**STAR 1-jet Q² (GeV²) 0.6 00 00 0.4 10 FICIST 0.2 $Q^2 = 10 \text{ GeV}^2$ 0 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10⁻³ 10^{-6} 10⁻² 10^{-4} 10^{-1} x_{min} Х

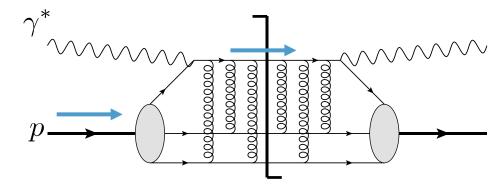
- **Polarized DIS data** runs out below $x \sim few \times 10^{-3}$
- The running integral of $\Delta\Sigma$ is **not converging quickly enough** to strongly constrain the quark contribution to the proton spin budget.

M. Sievert

Factorization at Moderate x

• The **DIS polarized structure functions** are related via factorization to the **quark helicity PDFs**

$$\frac{Q^2}{4\pi^2 \alpha_{EM}} \frac{d \,\Delta \sigma^{(\gamma^* \, p)}}{dx \, dQ^2} = 2x \, g_1(x, Q^2) \stackrel{L.O.}{=} \sum_f e_f^2 \, x \Delta q_f(x, Q^2)$$



31/65

• The quark hPDFs are non-local matrix elements of the **axial vector current**

M. Sievert

The Naïve Translation to Dipoles at Small x

- Naively, we get **dipole amplitudes** at small x which are sensitive to **polarization** *Y. Kovchegov, D. Pitonyak, M.S., JHEP* **1601** (2016) 072
- The "squared" contributions are **insensitive to the proton spin**.

$$x\Delta q_f(x,Q^2) = \frac{Q^2 N_c}{4\pi^2 \alpha_{EM}} \int \frac{d^2 x_{10} \, dz}{4\pi z (1-z)} \sum_{L,T} \left| \Delta \Psi(x_{10}^2,z) \right|^2 \int d^2 b_{10} \left[\frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{pol} \dagger \right] \right\rangle_{(zs)} + \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_1^{pol} V_0^{\dagger} \right] \right\rangle_{(zs)} \right]$$

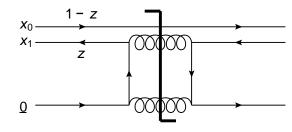
M. Sievert

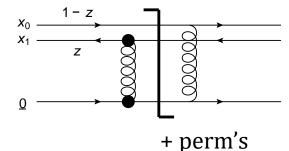
Spin Transfer is Power-Suppressed at Small x

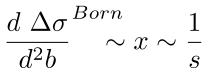
• The leading-power interaction at small x (i.e., a Wilson line) is **spin-independent**.

The initial conditions for spin-dependent scattering are suppressed by one power of s (or x).

> T-channel **quark exchange** is now a leading contribution

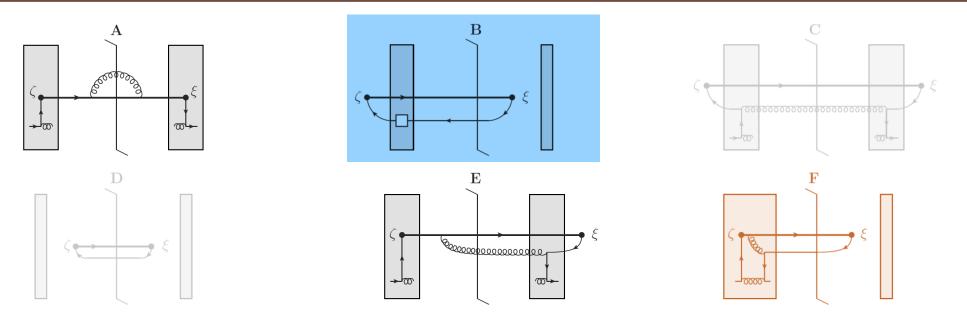






M. Sievert

A More Delicate Transition to Dipoles at Small x



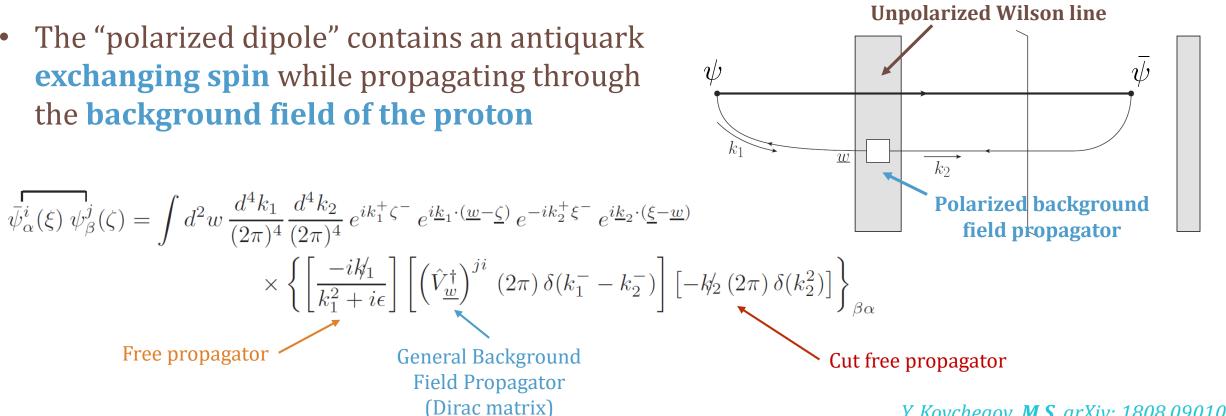
 Since the hPDF itself is power-suppressed, the handbag diagram and other "knockout" processes can contribute.
 Y. Kovchegov, M.S. arXiv: 1808.09010

 Using the Ward identity, the potential evolution corrections coming from "knockout" channels (A + E + cc) cancel after all.

M. Sievert

Helicity-Dependent Propagation in a Background Field

The "polarized dipole" contains an antiquark exchanging spin while propagating through the background field of the proton



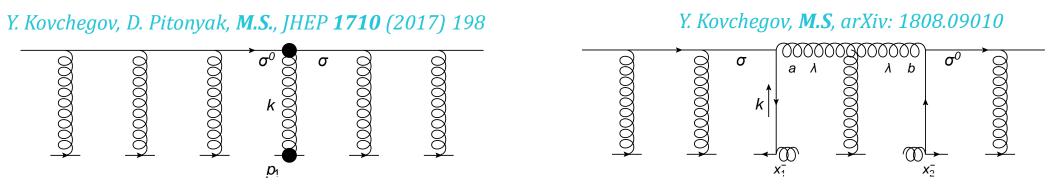
Y. Kovchegov, **M.S**, arXiv: 1808.09010 G. Chirilli, arXiv: 1807.11435

After performing the k_1 , k_2 integrals and replacing the Dirac structure with spinor sums, we can **pick out any desired spin projections**.

M. Sievert

Free propagator

Polarized Wilson Lines

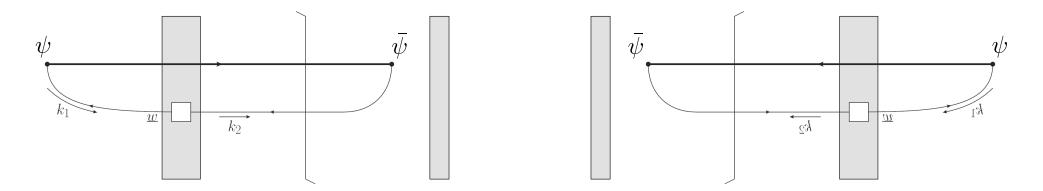


- Each spin-dependent coupling to the background field is power suppressed
- A "polarized Wilson line" contains one spin-dependent operator, dressed with 0(1) Wilson lines

$$V_{\underline{x}}^{pol} = \frac{igp_1^+}{s} \int_{-\infty}^{\infty} dx^- V_{\underline{x}}[+\infty, x^-] F^{12}(x^-, \underline{x}) V_{\underline{x}}[x^-, -\infty]$$
 Flavor-changing Wilson line
$$- \frac{g^2 p_1^+}{s} \int_{-\infty}^{\infty} dx_1^- \int_{x_1^-}^{\infty} dx_2^- V_{\underline{x}}[+\infty, x_2^-] t^b \psi_{\beta}(x_2^-, \underline{x}) U_{\underline{x}}^{ba}[x_2^-, x_1^-] \left[\frac{1}{2}\gamma^+\gamma^5\right]_{\alpha\beta} \bar{\psi}_{\alpha}(x_1^-, \underline{x}) t^a V_{\underline{x}}[x_1^-, -\infty].$$

M. Sievert

Helicity-Dependent Propagation in a Background Field



• The quark helicity PDF is built from **polarized dipole amplitudes**, as expected:

$$\Delta q(x,Q^2) = \frac{N_c}{8\pi^3} \int_{\Lambda^2/s}^{1} \frac{dz}{z} \int_{1/zs}^{1/zQ^2} \frac{dx_{10}^2}{x_{10}^2} \int d^2b_{10} \left\langle \frac{zs}{N_c} \operatorname{tr} \left[V_0 V_1^{pol \dagger} \right] + \frac{zs}{N_c} \operatorname{tr} \left[V_1^{pol} V_0^{\dagger} \right] \right\rangle_{(zs)}$$

Extra logarithm...! Polarized Dipole Amplitude: 2 *G*₁₀(*z s*)

M. Sievert

Mapping Hadronic Structure at Small x

37 / 65

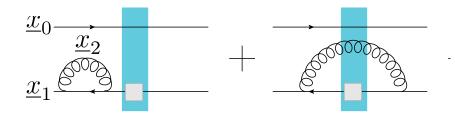
Quantum Evolution: Beyond Color Transparency

 Ladder emissions from the unpolarized Wilson line possess color transparency at short distances

$$\underline{x_0}$$
 $\underline{x_2}$
 $\underline{x_1}$
 $\underline{x_2}$
 $\underline{x_1}$
 $\underline{x_2}$
 $\underline{x_1}$
 $\underline{x_2}$
 $\underline{x_1}$
 $\underline{x_2}$
 $\underline{x_2}$
 $\underline{x_1}$
 $\underline{x_2}$
 \underline

$$\frac{\alpha_s N_c}{2\pi^2} \int\limits_{\frac{\Lambda^2}{s}} \int \frac{dz'}{z'} \int \frac{d^2 x_2}{x_{20}^2} \times \left[\frac{1}{N_c^2} \left\langle \operatorname{tr} \left[V_2 V_1^{pol \dagger} \right] \operatorname{tr} \left[V_0 V_2^{\dagger} \right] \right\rangle_{(z's)} - \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{pol \dagger} \right] \right\rangle_{(z's)} \right] \right]$$
Cancels when $x_2 \to x_0$

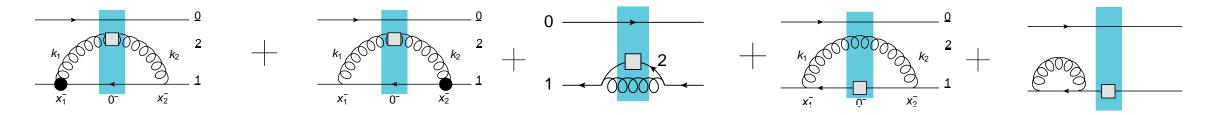
• But for ladder emissions from the **polarized Wilson line**, color transparency is **violated by spin**



$$\frac{\alpha_s N_c}{2\pi^2} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int \frac{d^2 x_2}{x_{21}^2} \times \left[\frac{1}{N_c^2} \left\langle \operatorname{tr} \left[V_2 V_1^{pol \dagger} \right] \operatorname{tr} \left[V_0 V_2^{\dagger} \right] \right\rangle_{(z's)} - \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_0 V_1^{pol \dagger} \right] \right\rangle_{(z's)} \right] \right]$$
Does NOT cancel when $x_2 \to x_1$

M. Sievert

Double Logarithmic Helicity Evolution



- Short-distance fluctuations about the polarized Wilson line generate **double logarithms** of the energy.
- Helicity evolution is **stronger** than unpolarized one evolution, but starts off power-suppressed.
- The transverse logarithm: **more sensitive** to the structure and ordering in the transverse plane
- Strict **lifetime ordering** (NLO for unpolarized evolution) is a **leading order effect for helicity**

 $\alpha_s \ln^2 \frac{1}{x} \sim 1$

Unpolarized: $x < e^{1/\alpha_s}$

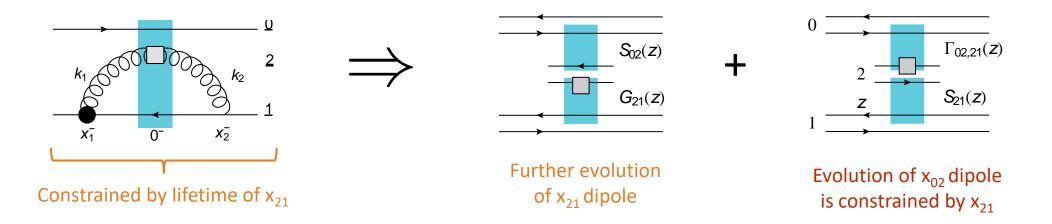
Helicity: $x < e^{1/\sqrt{\alpha_s}}$

Kirschner and Lipatov, Nucl.Phys. **B213** (1983) 122 *Bartels, Ermolaev, and Ryskin, Z.Phys.* **C70** (1996) 273 *Griffiths and Ross, Eur.Phys.J.* **C12** (2000) 277

39 / 65

M. Sievert

The Neighbor Dipole Function



• These evolution equations describe another **operator hierarchy**

• Just like the BK equation, they do **close in the large-Nc limit** (or large Nc & Nf)

But because lifetime ordering constrains the history of the polarized gluon cascade, not all dipoles are independent.
 Y. Kovchegov, D. Pitonyak, M.S., JHEP 1601 (2016) 072

M. Sievert

Evolution Equations at Large Nc

2

Y. Kovchegov, D. Pitonyak, **M.S.**, *JHEP* **1601** (2016) 072

$$\begin{split} G(x_{10}^2,z) &= G^{(0)}(x_{10}^2,z) + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z} \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma(x_{10}^2,x_{21}^2,z') + 3G(x_{21}^2,z') \right] \\ \Gamma(x_{10}^2,x_{21}^2,z') &= G^{(0)}(x_{10}^2,z') + \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z'} \frac{\frac{\min[x_{10}^2,x_{21}^2,\frac{z'}{z''}]}{z''}}{\int\limits_{\frac{1}{z''s}}^{\frac{1}{z''s}} \frac{dx_{32}^2}{x_{32}^2} \left[\Gamma(x_{10}^2,x_{32}^2,z'') + 3G(x_{32}^2,z'') \right] \end{split}$$

• Even at large-Nc, lifetime ordering leads to a **system of coupled equations** through the with **auxiliary "neighbor dipole" function**

M. Sievert

Solution: The Quark Helicity Intercept

- After evolving for a few units in rapidity, a **scaling behavior** sets in
- Makes it possible to solve the large-Nc equations **analytically**
- The x (energy) dependence approaches a universal powerlaw behavior:

$$\alpha_h^{q,S} = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

$$\alpha_h^{q,NS} = \sqrt{2} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

$$G(x_{10}^2, zs) \sim G(zsx_{10}^2)$$

$$G(x_{\perp}^2, zs) \sim (zs)^{\alpha_h^q}$$
$$g_1(x, k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q}$$
$$\Delta q(x, Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q}$$

Y. Kovchegov, D. Pitonyak, **M.S.**, Phys. Rev. Lett. **118** (2017) 052001

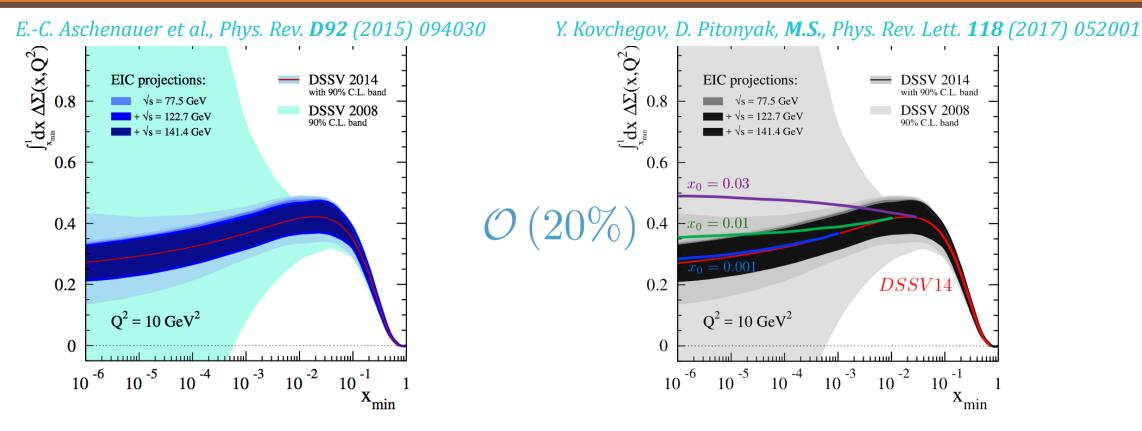
Y. Kovchegov, D. Pitonyak, **M.S.**, Phys. Lett. **B772** (2017) 136

Y. Kovchegov, D. Pitonyak, **M.S.**, Phys. Rev. **D95** (2017) 014033

42 / 65

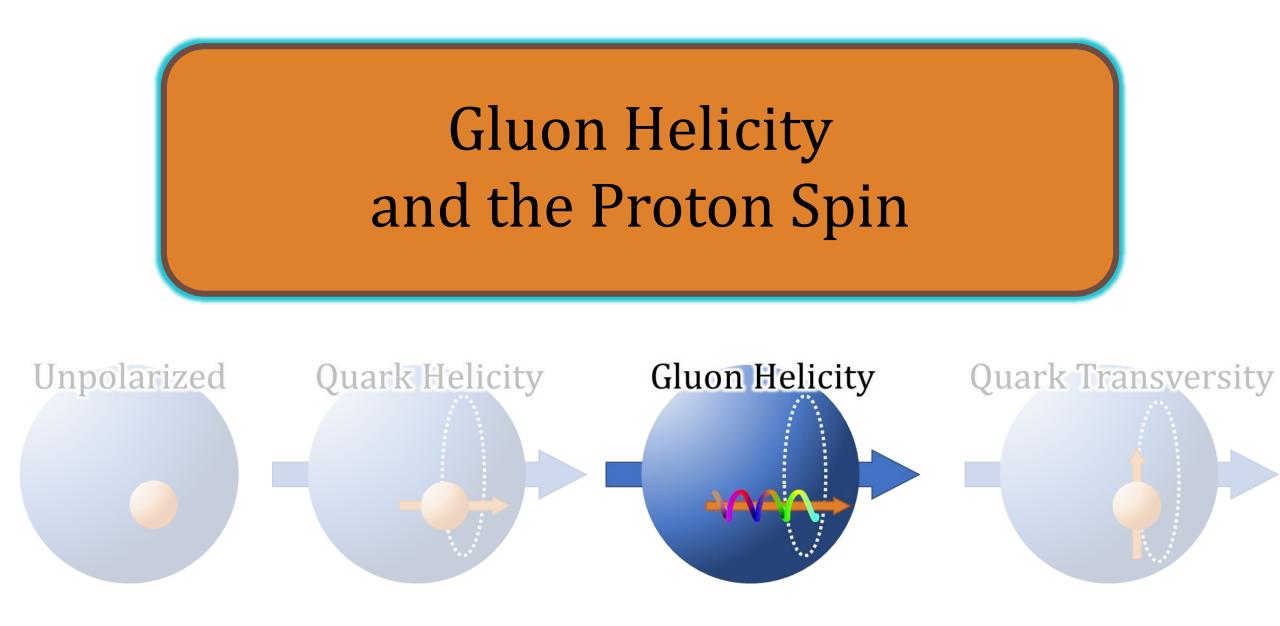
M. Sievert

A Crude Phenomenological Estimate



- Depending on when our asymptotic behavior is turned on, the added contribution to the proton spin at small x could be significant.
- The theory **doesn't tell you** when the **small-x effects set in**.

M. Sievert



M. Sievert

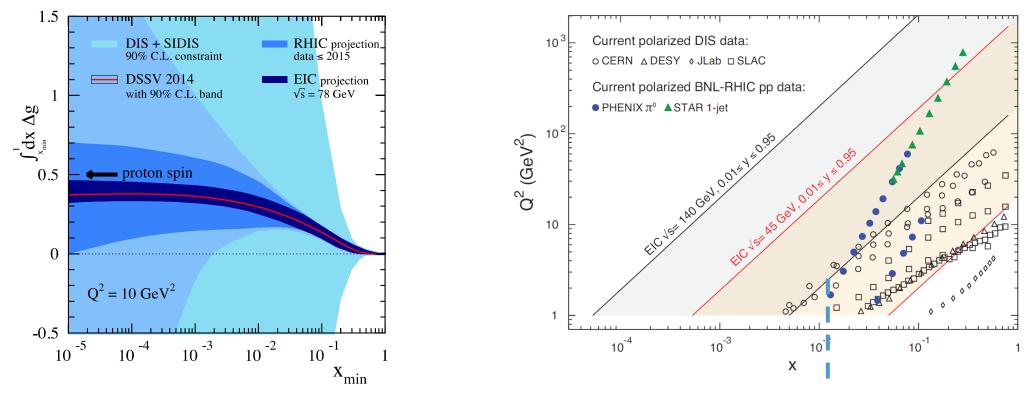
Mapping Hadronic Structure at Small x

44 / 65

Gluon Helicity: What Do We Know?

E.-C. Aschenauer et al., Phys. Rev. **D92** (2015) 094030

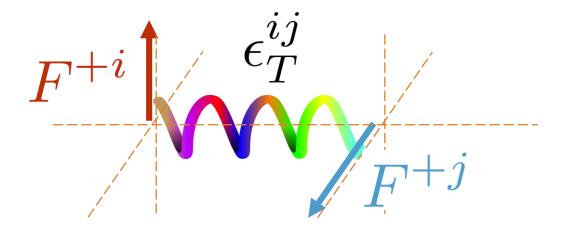
A. Accardi et al., Eur. Phys. J. A52 (2016) 268



- Data on polarized gluons runs out by $x \sim 10^{-2}$
- The gluon contribution to the proton spin is **far less constrained** at small x

M. Sievert

Definition of Gluon Helicity



$$g_{1L}^G(x,k_T^2) = \frac{-2i}{xP^+} \int \frac{d\xi^- d^2\xi}{(2\pi)^3} e^{ik\cdot\xi} \langle P,S_L| \epsilon_T^{ij} \operatorname{tr} \left[F^{+i}(0) \mathcal{U}[0,\xi] F^{+j}(\xi) \mathcal{U}'[\xi,0]\right] |P,S_L\rangle_{\xi^+=0}$$

- Gluon helicity is a **very different object** than quark helicity
- A **circular flow** of the gluon field-strength:
 - Requires preserving azimuthal correlations

M. Sievert

Two Different Gluon Distributions

	Inclusive	Single inclusive	DIS dijet	γ +jet	dijet in pA
xG_{WW}	×	×	\checkmark	×	\checkmark
<i>xG</i> _{DP}	\checkmark	\checkmark	×	\checkmark	\checkmark

B.-W. Xiao, Nucl. Phys. A967 (2017) 257

- There are **two distinct kinds of gluon TMDs** with different **gauge link structures**.
- The two are **measured experimentally** in **different processes**

The Gluon Helicity Operators at Small x

Y. Kovchegov, D. Pitonyak, M.S., JHEP 1710 (2017) 198

$$g_{1L}^{G\,dip}(x,k_T^2) = \frac{-4i}{g^2(2\pi)^3} \int d^2 x_{10} \, d^2 b_{10} \, e^{+i\underline{k}\cdot\underline{x}_{10}} \, \underline{k_{\perp}^i \epsilon_T^{ij}} \left\{ \left\langle \operatorname{tr} \left[V_{\underline{0}} \left(\underline{V_{\underline{1}}^{pol}} \right)_{\underline{\perp}}^j \right] \right\rangle + \operatorname{c.c.} \right\}$$

$$g_{1L}^{G\,WW}(x,k_T^2) = \frac{4}{g^2(2\pi)^3} \int d^2 x_{10} \, d^2 b_{10} \, e^{i\underline{k}\cdot\underline{x}_{10}} \, \underline{\epsilon_T^{ij}} \left\langle \operatorname{tr} \left[(\underline{V_{\underline{1}}^{pol}} \right)_{\underline{\perp}}^i \, V_{\underline{1}}^\dagger \, V_{\underline{0}} \left(\frac{\partial}{\partial(x_0)_{\underline{\perp}}^j} V_{\underline{0}}^\dagger \right) \right] + \operatorname{c.c.} \right\rangle$$

- The two different gluon helicity distributions correspond to different operators at small x
- Both invoke a circular flow (curl) of a preferred direction in the polarized Wilson line

M. Sievert

The Difference Between Quark and Gluon Polarization

Y. Kovchegov, D. Pitonyak, M.S., JHEP 1710 (2017) 198

• Polarized quarks couple to a **local curl** of the gluon field

$$V_{\underline{x}}^{pol}\Big|_{\text{quarks}} = \int dx^{-} V_{\underline{x}}[\infty, x^{-}] \left(igp^{+} \,\underline{\nabla} \times \underline{A(x)}\right) V_{\underline{x}}[x^{-}, -\infty]$$

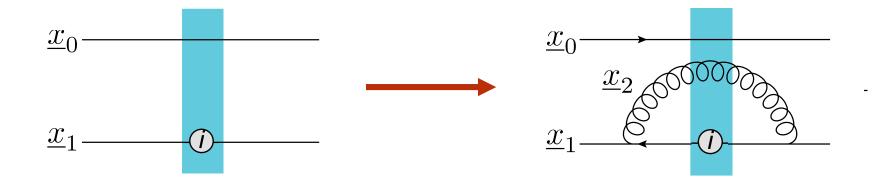
• Polarized gluons couple to a **global curl**, after multiple rescattering

$$\underline{\nabla} \times \underline{(V_{\underline{x}})}\Big|_{\text{gluons}} = \underline{\nabla} \times \left[\int dx^{-} V_{\underline{x}}^{pol}[\infty, x^{-}] \left(igp^{+} \underline{A(x)} \right) V_{\underline{x}}[x^{-}, -\infty] \right]$$

> That azimuthal correlation can get washed out by multiple scattering.

M. Sievert

Quarks are Forever, but Gluons can Forget



- Real unpolarized emissions are **isotropic** and can **wash out the azimuthal correlations** necessary for gluon helicity.
- These vanish after angular averaging.

 $\int d^2 x_2 \to 0$

• Leads to a **depletion** of the gluon distribution

M. Sievert

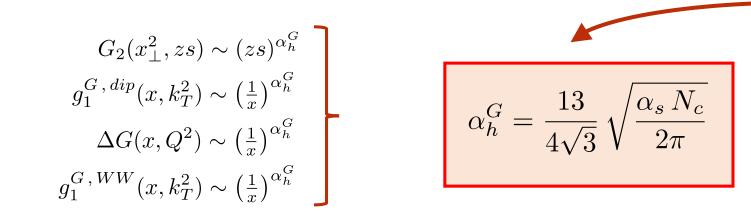
Gluon Helicity: Evolution Equations

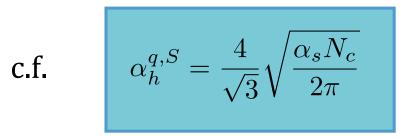
$$\begin{split} G_{2}(x_{10}^{2},zs) &= G_{2}^{(0)}(x_{10}^{2},zs) - \left(\frac{\alpha_{s}N_{c}}{3\pi}\frac{1}{\alpha_{h}^{q}}G_{0}\right)(zs\,x_{10}^{2})^{\alpha_{h}^{q}}\ln\frac{1}{x_{10}\Lambda} & \underbrace{X \text{ Kovchegov, D. Pitonyak, M.S.,}}_{JHEP~1710~(2017)~198} \\ &- \frac{\alpha_{s}N_{c}}{2\pi}\int_{\frac{1}{x_{10}^{2}s}}^{z}\frac{dz'}{z'}\int_{\frac{1}{z's}}^{x_{10}^{2}}\frac{dx_{21}^{2}}{x_{21}^{2}}\Gamma_{2}(x_{10}^{2},x_{21}^{2},z's), & \text{Quark helicity evolution} \\ & \text{Neighbor dipole} \\ \Gamma_{2}(x_{10}^{2},x_{21}^{2},z's) &= G_{2}^{(0)}(x_{10}^{2},z's) - \left(\frac{\alpha_{s}N_{c}}{3\pi}\frac{1}{\alpha_{h}^{q}}G_{0}\right)(z's\,x_{10}^{2})^{\alpha_{h}^{q}}\ln\frac{1}{x_{10}\Lambda} \\ &- \frac{\alpha_{s}N_{c}}{2\pi}\int_{\frac{1}{x_{10}^{2}s}}^{z'}\frac{dz''}{z''}\int_{\frac{1}{z''s}}^{\frac{1}{z''s}}\frac{dx_{21}^{2}}{x_{10}^{2}}\Gamma_{2}(x_{10}^{2},x_{21}^{2},z''s). \end{split}$$

- Gluon helicity evolution has **similar structure to quark helicity evolution**
- Receives **feed-in** from fluctuating into a **polarized quark**

M. Sievert

Gluon Helicity: Evolution Equations





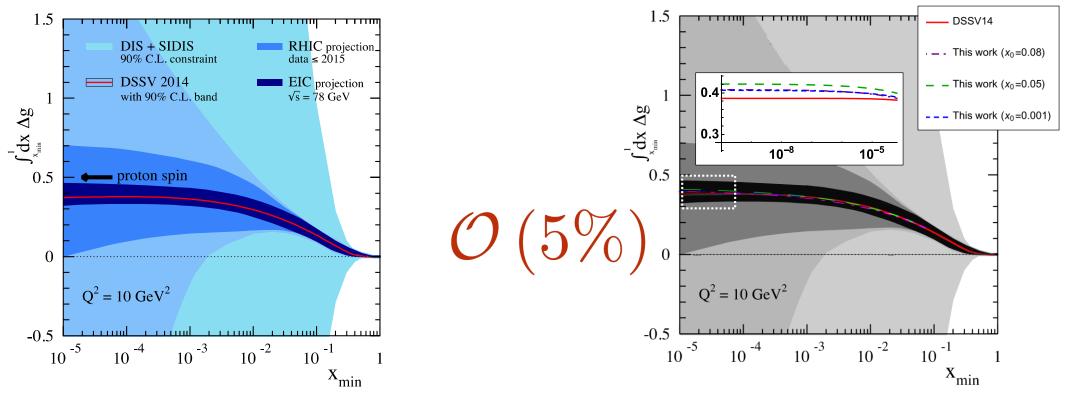
• Because **multiple scattering dilutes the gluon polarization**, it **decays faster at small x** than for quarks.

M. Sievert

A Crude Phenomenological Estimate

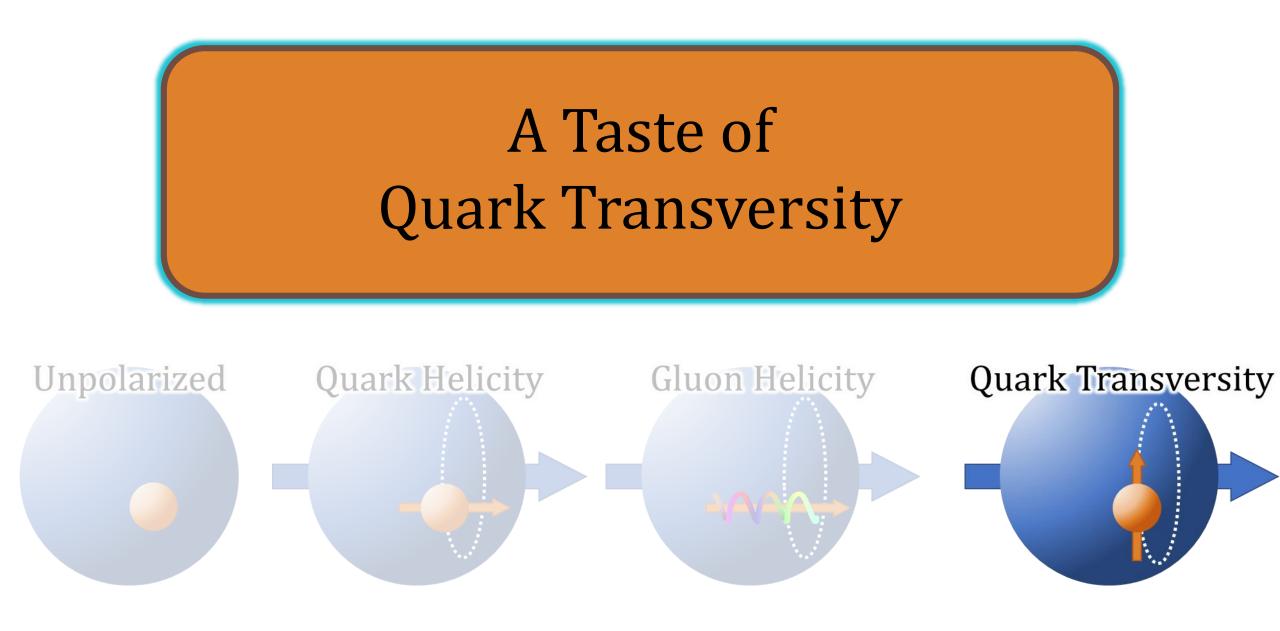
E.-C. Aschenauer et al., Phys. Rev. **D92** (2015) 094030

Y. Kovchegov, D. Pitonyak, **M.S.**, JHEP **1601** (2016) 072



- The **enhancement** of gluon polarization at small x is **much milder** than for quarks
- Not very important for constraining the gluon contribution to the proton spin

M. Sievert



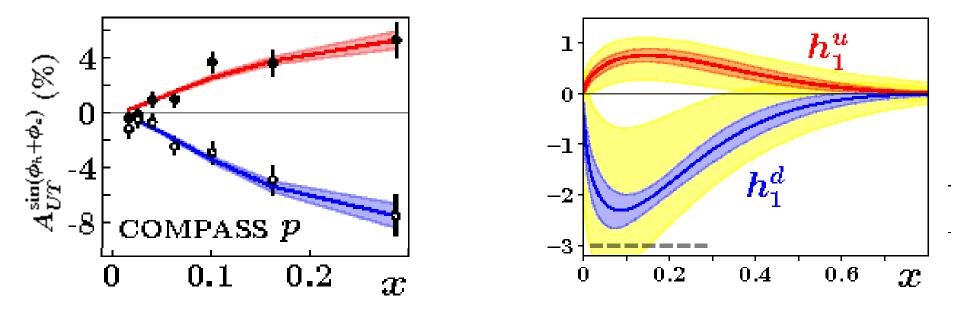
M. Sievert

Mapping Hadronic Structure at Small x

54 / 65

Quark Transversity: What Do We Know?

H.-W. Lin et al., Phys. Rev. Lett. **120** (2018) 152502



- Transversity is **notoriously difficult to extract**
- Chiral odd PDF convoluted with another chiral odd distribution in observables

M. Sievert

Transversity and the Tensor Charge

A. Courtoy et al., Phys. Rev. Lett. 115 (2015) 162001 T. Bhattacharya et al., Phys. Rev. Lett. 115 (2015) 212002

Tensor Charge $g_T^q(Q^2) = \int_0^1 dx \, \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$

Potential imprints of BSM Physics

Neutron EDM: $\langle n | \, \bar{\psi}(0) \, \sigma^{\mu\nu} \gamma^5 \, \psi(0) \, | n \rangle$

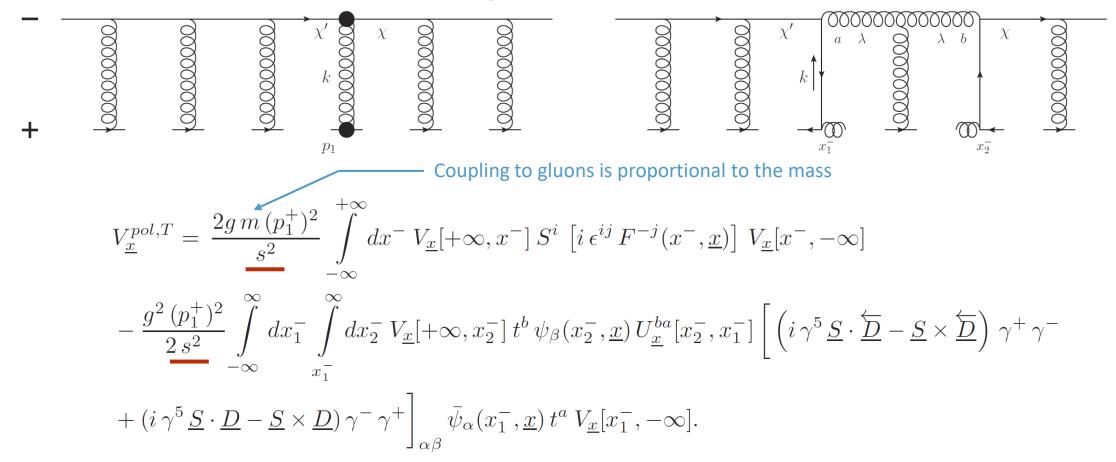
Neutron Beta Decay: $\langle p | \, \bar{u}(0) \, \sigma^{\mu\nu} \gamma^5 \, d(0) \, | n \rangle$

- The **flavor non-singlet moment** of transversity gives the **tensor charge**
- Like the proton spin sum rules, requires **extrapolation to small x**
- Sensitive to contributions from **Beyond the Standard Model physics**

M. Sievert

Transverse Spin is Doubly Suppressed

Y. Kovchegov and M. S., arXiv: 1808.10354



• Coupling to transverse spin is suppressed by **two powers** of energy

M. Sievert

The Transversely Polarized Dipole

Flavor singlet / non-single

$$h_{1T} \sim h_{1T}^{\perp} \sim \frac{(zs)^2}{2N_c} \operatorname{Re} \left\langle \operatorname{tr} \left[V_0 V_1^{pol \, T} \,^{\dagger} \right] \pm \operatorname{tr} \left[V_1^{pol \, T} \, V_1^{\dagger} \right] \right\rangle$$

- Transversity (and pretzelosity) are both governed by a similar transverselypolarized dipole amplitude
- The flavor singlet and non-singlet transversities evolve **differently**

M. Sievert

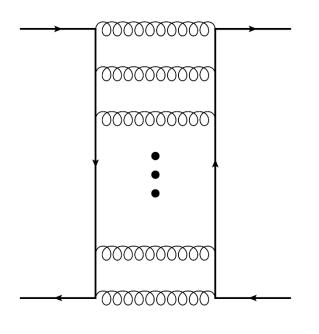
Nonsinglet Quark Transversity

• The **flavor-singlet** evolution is **complicated**...

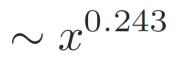
• But the **flavor non-singlet** evolution for transversity has exactly the same structure as for **non-singlet helicity**

$$h_{1T}^{NS}(x,k_T^2) \sim h_{1T}^{\perp NS}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{-1+2\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

Itakura et al., Nucl. Phys. A730 (2004) 160

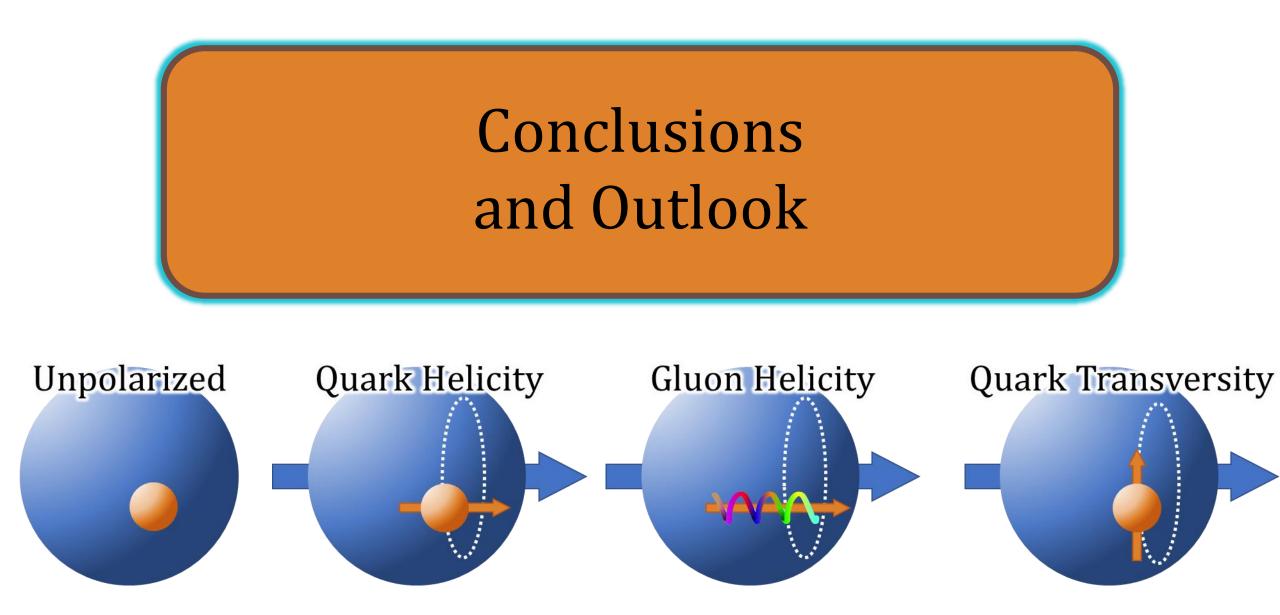


• Phenomenologically: **very small**, not likely to contribute much to the tensor charge.



59 / 65

M. Sievert



M. Sievert

Mapping Hadronic Structure at Small x

60 / 65

The General Procedure

- 1. Approximate the **general operator** with **small-x kinematics**
- 2. Construct the appropriate **polarized Wilson lines** and dipole operators
- 3. Evolve using the **background field method**
- 4. Try to solve using Laplace-Mellin techniques

Other Operators of Interest

Y. Hatta et al., Phys. Rev. **D95** (2017) 114032 S. Bhattacharya et al., Phys. Lett. **B771** (2017) 396

- Quark and gluon **Orbital Angular Momentum**
 - At small x, the operators appear to be governed by the same polarized dipole as the gluon helicity
 - Enter with **different weights** in the integrand...

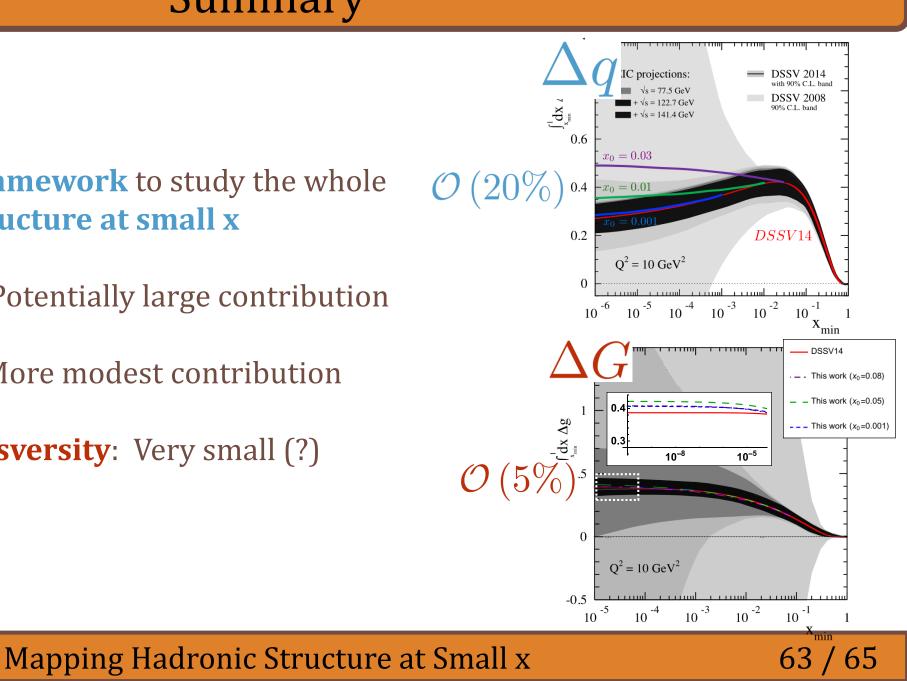
• Gluonic transversity (for the deuteron, etc.)

- **Other TMDs**: worm-gear, etc...
 - > Do they follow the evolution of the **t-channel spin exchange**?

M. Sievert

Summary

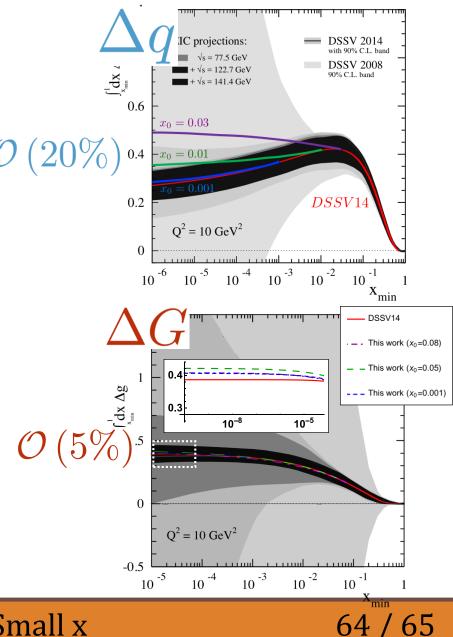
- We are **building a framework** to study the whole map of hadronic structure at small x
 - > Quark helicity: Potentially large contribution
 - **Gluon helicity**: More modest contribution
 - > Non-singlet transversity: Very small (?)



M. Sievert

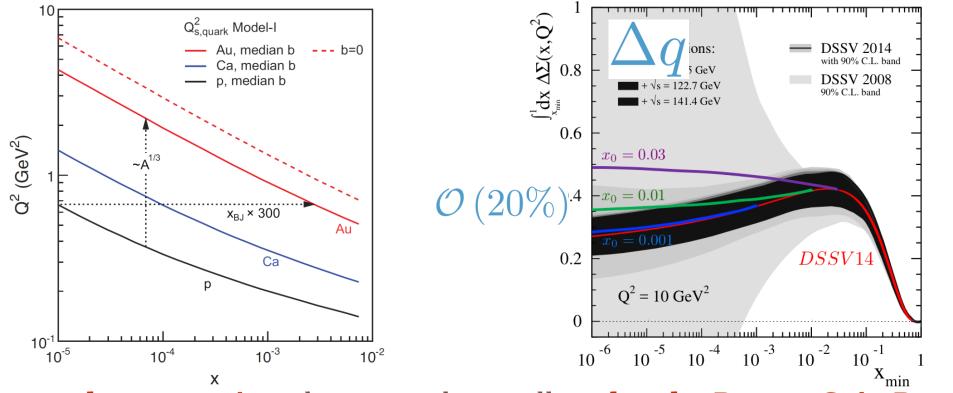
Summary

- Future applications:
 - > OAM and other operators
 - > Systematically improve the **precision**
 - Connections with other subfields (jets, heavy ions, etc.)



M. Sievert

Perspective: What Do We Lose If We Lose Small x?



- How great a **lever arm in x** do we need to really **solve the Proton Spin Puzzle**?
- Can we **quantify this** to better inform the **design capabilities of an EIC**?
- What **other tools** can help fill the gap? (Quasi-PDFs?)

M. Sievert