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Surprisingly, when we want to use high-dimensional
data and have to deal with the detector response,
we do not have a good way to calculate the likelihood.
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1. The simulation-
based inference
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1. LHC measurements as a
simulation-based inference problem
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Modelling LHC processes
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Modelling LHC processes

Shower Parton-level Theory
splittings momenta parameters
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Modelling LHC processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters
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Modelling LHC processes

corvables Detector Shower Parton-level Theory
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Modelling LHC processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters
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Modelling LHC processes
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Modelling LHC processes

| atent variables

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

p(x|f) = /dzd/d,zs/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous
spacel

(More subtle: We cannot sample
from p(z|x, 0) efficiently.)

Inference
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The problem of simulation-based inference
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The problem of simulation-based inference

Parameters 0 —_— Simulator —_— Observables x
Latent 2

Prediction: e Well-motivated mechanistic, causal model

e Simulator can generate samples = ~ p(x|0)

Inference: e Interactions between low-level components lead to
challenging inverse problems

e Likelihood p(z|f) = /dz p(z, z|0) is intractable
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e observed data zobs ~ P(Tobs|Otrue ), and
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Three problem statements

Given

« asimulator that lets you generate N samples ; ~ p(x;|0;) (for parameters 0, of our choice),

e observed data zobs ~ P(Tobs|Otrue ), and

e aprior p(6),

a) estimate étrue b) construct confidence sets c) estimate the posterior
(e.g. MLE) (e.q. likelihood ratio tests) (or sample from posterior)
(9j 4 (9j 4 (9j 4
‘gtme 95% CL
‘étrue
> > >
92 (9@ ‘97,
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2. Why has that not stopped us before?



Solve it with summary statistics

High-dimensional event data x

p(x|f) cannot be calculated



Solve it with summary statistics
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High-dimensional event data x One or two summary statistics z’

p(z'|0) can be estimated

p(x|f#) cannot be calculated with histograms, KDE, ...



Summary statistics for LHC measurements?

e In many LHC problems there is no
single good summary statistics:
compressing to any z’ loses
information!

e |deally: analyze all trustworthy
high-level features
, or some form of
low-level features, including
correlations



Summary statistics for

In many LHC problems there is no
single good summary statistics:
compressing to any z’ loses
information!

Ideally: analyze all trustworthy
high-level features

, or some form of
low-level features, including
correlations

LHC measurements?
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Solve it by approximating the integral

e Problem: high-dim. integral over shower / detector trajectories

plal6) = [dz4 [dz [dz, polza) pealz) pzel2) Pl 10

[CMS]
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Solve it by approximating the integral

e Problem: high-dim. integral over shower / detector trajectories

plal6) = [dz4 [dz [dz, polza) pealz) pzel2) Pl 10

[CMS]

e Matrix Element Method (and similarly Optimal Observables): (K. kondo 1988]
e approximate shower + detector effects into transfer function p(z|z,)

e explicitly calculate remaining integral
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Solve it by approximating the integral

Key; tuon
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e Problem: high-dim. integral over shower / detector trajectories

[CMS]

plal6) = [dz4 [dz [dz, polza) pealz) pzel2) Pl 10 ' !!! .
e Matrix Element Method (and similarly Optimal Observables): (K. kondo 1988]
e approximate shower + detector effects into transfer function p(z|z,)
o explicitly calculate remaining integral 109 197 16 (8 TeV)
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Get the best of two worlds

_

Can we use ML
models to fit
simulators to data?

/_\ Machine learning models: focus on performance

e based on mechanistic, causal e good at learning representations from data
model

Simulators: focus on understanding

e good inductive biases

\_/ o differentiable, often invertible, probabilistic:

. well-suited for inference / fitting
Can we inject

domain knowledge
into ML models?

e interpretable parameters



ldea 1: the likelihood ratio trick

e Generative Adversarial Networks (GANS): [I. Goodfellow et al. 1406.2661]

Generator
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ldea 1: the likelihood ratio trick

e Generative Adversarial Networks (GANS): [I. Goodfellow et al. 1406.2661]
Generator
(intractable likelihood pgen (7))
Discriminator learns decision function
. Ptrue (l‘)
j s(x) —
Examples Discriminator pgen (x) Ptrue (w)

(intractable likelihood piue ()
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ldea 1: the likelihood ratio trick

e Generative Adversarial Networks (GANS):

O Q
Generator o 8 8 0
(intractable likelihood pgen (7)) o o
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e Similarly, we can train a classifier between two sets of simulated samples
Simulator
(intractable likelihood p(z|0y)) 6, — EIMVIEI]
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ldea 1: the likelihood ratio trick

e Generative Adversarial Networks (GANS):
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Inference by likelihood ratio trick

Parameters 0

|

Observables
P E——

Simulator

[ r———m—]
1. Simulation

Run simulator and save data



Inference by likelihood ratio trick

Parameters 0

! ,

() likelihood

------ ratio
Simulator arg min L[g] —> 7(x|0)

9

_— _—
1. Simulation 2. Machine Learning

Train NN classifier, interpret as

Run simulator and save data likelihood ratio estimator



Inference by likelihood ratio trick

Observed data
Lobs

Parameters 0

Observables G195 "
1€ 78552 i

’ . : 2 Apprqmmate
likelihood
""" ratio O ;

Simulator arg min L|g| —> f'(x\@) —_—

g A N d
—_—m S ————————————

1. Simulation 2. Machine Learning 3. Inference

Train NN classifier, interpret as Amortized: cheap

Run simulator an s . .
un simulator and save data likelihood ratio estimator to repeat for new data




ldea 2: “mining gold”

Simulator

Latent 2

We cannot compute p(x|0) :fdzp(x,z\e) ,
but for each simulated event we can compute

e thejoint likelihood ratio
p(z,20)  [M]*(z]0)
r(x, z|0) = ~
(&, 216) Pret (T, 2) |M‘?ef(z)

e thejoint score
Vo | M|*(20)

H(z.216) = Vologp(z,210) ~ ~\ 75



ldea 2: “mining gold”

Simulator

Latent 2

We cannot compute p(x|0) :fdzp(x,z\e) ,

but for each simulated event we can compute Why are they useful? One can show that

e thejoint likelihood ratio
p(z,20)  [M]*(z]0)
r(x, z|0) = ~
(&, 216) Pret (T, 2) |M‘12~ef(z)

e the joint likelihood ratio is an unbiased
estimator of the likelihood ratio

e the joint score provides unbiased gradient

e thejoint score information

Vo | M|*(2]6)

t(x, 2|0) = Vg log p(x, 2|0) ~ ME(20) = use them as labels in supervised NN training




Mining gold adds information

Likelihood ratio trick
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Mining gold adds information

Likelihood ratio trick + joint likelihood ratio
— 5(x|69, 61) 5] T r(x[6o, 61)
Xe ~ p(x|6 =067 =0.0) r(x, z|6o, 61), x ~ p(x|0 = 6g)
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Mining gold adds information

Likelihood ratio trick + joint likelihood ratio + joint score
—— 5(x[60, 61) 5 | — rx|6o,61) _1.00 -
Xe ~ p(x|6 =067 =0.0) r(x, z|6o, 61), x ~ p(x|0 = 6g)
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[JB, G. Louppe, J. Pavez, K. Cranmer

Mining gOId adds information 1805.12244, 1805.00013, 1805.00020]

Log likelihood ratio

Likelihood ratio trick + joint likelihood ratio + joint score = RASCAL
—— 5(x[60, 61) 5 | — rx|6o,61) ~1.00
O Xe~p(x|@=67=0.0) o r(x,z|6g,01), x ~ p(x|6 =06p)
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Using more information = more sample-efficient inference
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RASCAL

Parameters 0

Observables

T Approximate

likelihood
ratio

— 1(x, 2|0)

Simulator arg min L[g] —> #(z|0) —>

g

—> {(x, 2|0)
Latent z
Augmented data

_

1. Simulation 2. Machine Learning

Augment training data &
use as labels in new loss functions

= improve training efficiency

Extract joint likelihood ratio
and joint score from simulator

Observed data

Lobs

- -y
‘ﬂ ~

L 4
L

3. Inference




Sales pitch

Get all the information in high-dimensional data (no need for summary statistics)
Use state-of-the-art shower and detector models (no transfer fns)
Evaluate events in microseconds (amortized inference)

Need less training data than black-box ML methods  (using matrix-element information)
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Systematics

_

Can you trust the simulator?

e Model uncertainties explicitly:
nuisance parameters + profiling / marginalization

e Make analysis robust:
ideas from domain adaptation, algorithmic fairness



Systematics

_

Can you trust the simulator? Can you trust the neural network?
e Model uncertainties explicitly: e Sanity checks: expectation values, “critic” tests
nuisance parameters + profiling / marginalization e Calibrate NN output

e Make analysis robust:

. . . e Neyman construction with toys
ideas from domain adaptation, algorithmic fairness



4. Examples




Proof of concept: Higgs production in weak boson fusion

[JB, K. Cranmer, G. Louppe, J. Pavez

at least 16-dimensional 1805.00013, 1805.00020]

observable space

q —
.
Exciting new physics might hide here!
We parameterize it with two EFT coefficients:
2
1
E 'CSM J;\MQ/ g DM¢T aDVQb g (Qb-‘-gb) Wa W,UJVa
\—/_/ \—/_/
Oww
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Proof of concept: Higgs production in weak boson fusion

[JB, K. Cranmer, G. Louppe, J. Pavez

at least 16-dimensional 1805.00013, 1805.00020]

observable space

Goal: constrain the two EFT parameters

e new inference methods

e baseline: 2d histogram analysis of jet
momenta & angular correlations

Two scenarios:

o Simplified setup in which we can compare to

Exciting new physics might hide here! true likelihood

We parameterize it with two EFT coefficients:

2
]

\_v—/ \—r—/
Oww

o “Realistic” simulation with approximate
detector effects
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Stronger limits...

Expected exclusion limits at 68%, 99.7% CL

1.0
2D histogram
e
s f’f’ h
,°/~ ML-based N\
0.5 - /' /  inference \
7/ techniques \ In some regions of parameter space, the
./I/ ! ML-based inference techniques improve the
< l!'l (/*'\ ll sensitivity as much as taking 90% more data
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...with less training data

Mean squared error on likelihood ratio

0175 1 T e
*. Likelihood
0.15071 | “ ratio trick
\\ With enough training data, the ML algorithms
0.125 - . \ . get the likelihood function right.
\
. \ “
0.100 - \\ \ Using more information from the simulator
\ \Likelihood ratio trick improves sample efficiency substantially.
0.075 - \\ +gold mining k
0.050 -
0.025 -
0.000 - T

10° 104 10° 10° 10’

Number of simulations



Constraining operators in ttH effectively

e Pheno-level analysis of
pp — tth — (b7) (b0) (vy) EF™

with MadGraph + Pythia + Delphes

e Inference on three EFT operators:

] _
= — S (H'H)(H'Qr)ug, Og = -3

v miy

2
Oy -

(HH)GY,GLY




Constraining operators in ttH effectively

* Pheno-level analysis of e New inference techniques improve expected
pp — tEh — (b)) (b7 () Emss HL-LHC limits compared to
0.3

with MadGraph + Pythia + Delphes Rate
pT,yy
0.2 7 —¥— SALLY
—— ALICES
0.1-
e Inference on three EFT operators: 2
S 0.0-
1 - g° =
O, =——(H'H)(H'Qr)ur, O¢ =2 (H'H)G%,G"
v My,
49 FA . —0.1 1
Oug = 9 yu(H QL)7 TCLU’RG/U/
My
~0.2-
_03 I T T T T
-06 -03 0.0 0.3 0.6

100 Co



. / . .
Huntlng Z — 17 [J. Hollingworth, D. Whiteson 2002.04699]

Multivariate analysis with new
ML-based inference techniques
leads to better expected limits
than m,; analysis

280 290 300 310 320
mz (GeV)
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Benchmarking STXS in WH

Simplified Template Cross-Sections (STXS)

define observable bins that are supposed to
capture as much information on NP as possible

Stage 1.1

VH

= V(— leptons)H

[
q7 — WH

py

qq —~ ZH g9 — ZH

0

75 |

150 _|

250 _|

400 |-----eemmmmanon

__________

----------------------------

O-jet 1-jet > 2-jet

~ O
OHD:OHD—%:

O-jet 1-jet > 2-jet O-jet 1-jet > 2-jet

(¢T)

Let’s check! How much information on

(6" D"¢)*(¢'D,9)

(6'6) - 7

Ouw = ¢T (bWﬁVW“Va
0(3) _ T-Ba )
Hq (Cb l 7 gb)(QLO- Y QL) 9

can we extract from pp — WH — (v bb?



Benchmarking STXS in WH

e Simplified Template Cross-Sections (STXS) e Results: STXS are indeed sensitive to operators,
define observable bins that are supposed to adding a few more bins improve them,
capture as much information on NP as possible but a multivariate analysis is still stronger
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AUtomathn [JB, F. Kling, |. Espejo, K. Cranmer 1907.10621]

Our open-source Python package MadMiner makes it straightforward
to apply these ML-based inference techniques

‘ ’ github.com/diana-hep/madminer

P PLJPI pip install madminer

hub.docker.com/u/madminertool

cranmer.github.io/madminer-tutorial

madminer.readthedocs.io
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Simulation-based inference problems...

Parameters 0 —_— Simulator —_— Observables x
Latent 2

Prediction: e Well-motivated mechanistic, causal model

e Simulator can generate samples = ~ p(x|0)

Inference: e Interactions between low-level components lead to
challenging inverse problems

e Likelihood p(z|f) = /dz p(z, z|0) is intractable
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... appear in many fields of science

Gravitational waves

Collider experiments

Gravitational lensing
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... appear in many fields of science
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Flames

Stellar streams

Gravitational waves

Collider experiments
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... appear in many fields of science
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Chemical reactions

Flames

Stellar streams

Gravitational waves

Protein tworks Gravitational lensing
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... appear in many fields of science
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The frontier of simulation-based inference

Kyle Cranmer®®'®, Johann Brehmer®®®, and Gilles Louppe®

aCenter for Cosmology and Particle Physics, New York University, New York, NY 10003; ®Center for Data Science, New York University, New York, NY 10011;

and ‘Montefiore Institute, University of Liege, B-4000 Liege, Belgium

Edited by Jitendra Malik, University of California, Berkeley, CA, and approved April 10, 2020 (received for review November 4, 2019)

Many domains of science have developed complex simulations to
describe phenomena of interest. While these simulations provide
high-fidelity models, they are poorly suited for inference and lead
to challenging inverse problems. We review the rapidly devel-
oping field of simulation-based inference and identify the forces
giving additional momentum to the field. Finally, we describe how
the frontier is expanding so that a broad audience can appreciate
the profound influence these developments may have on science.

statistical inference | implicit models | likelihood-free inference |
approximate Bayesian computation | neural density estimation

echanistic models can be used to predict how systems

will behave in a variety of circumstances. These run the
gamut of distance scales, with notable examples including par-
ticle physics, molecular dynamics, protein folding, population
genetics, neuroscience, epidemiology, economics, ecology, cli-
mate science, astrophysics, and cosmology. The expressiveness of
programming languages facilitates the development of complex,
high-fidelity simulations and the power of modern computing
provides the ability to generate synthetic data from them. Unfor-
tunately, these simulators are poorly suited for statistical infer-
ence. The source of the challenge is that the probability density
(or likelihood) for a given observation—an essential ingredient
for both frequentist and Bayesian inference methods—is typi-
cally intractable. Such models are often referred to as implicit
models and contrasted against prescribed models where the like-
lihood for an observation can be explicitly calculated (1). The
problem setting of statistical inference under intractable likeli-
hoods has been dubbed likelihood-free inference—although it
is a bit of a misnomer as typically one attempts to estimate
the intractable likelihood, so we feel the term simulation-based
inference is more apt.

The intractability of the likelihood is an obstruction for scien-
tific progress as statistical inference is a key component of the
scientific method. In areas where this obstruction has appeared,
scientists have developed various ad hoc or field-specific meth-
ods to overcome it. In particular, two common traditional
approaches rely on scientists to use their insight into the sys-
tem to construct powerful summary statistics and then compare
the observed data to the simulated data. In the first one, density
estimation methods are used to approximate the distribution of

the simulator—is being recognized as a key idea to improve the
sample efficiency of various inference methods. A third direction
of research has stopped treating the simulator as a black box and
focused on integrations that allow the inference engine to tap
into the internal details of the simulator directly.

Amidst this ongoing revolution, the landscape of simulation-
based inference is changing rapidly. In this review we aim to
provide the reader with a high-level overview of the basic ideas
behind both old and new inference techniques. Rather than
discussing the algorithms in technical detail, we focus on the
current frontiers of research and comment on some ongoing
developments that we deem particularly exciting.

Simulation-Based Inference

Simulators. Statistical inference is performed within the context
of a statistical model, and in simulation-based inference the
simulator itself defines the statistical model. For the purpose
of this paper, a simulator is a computer program that takes
as input a vector of parameters 6, samples a series of internal
states or latent variables z; ~ p;(z|6, z<:), and finally produces
a data vector z ~ p(z|0,z) as output. Programs that involve
random samplings and are interpreted as statistical models are
known as probabilistic programs, and simulators are an exam-
ple. Within this general formulation, real-life simulators can vary
substantially:

e The parameters 6 describe the underlying mechanistic model
and thus affect the transition probabilities p;(z:|0, z<:). Typ-
ically the mechanistic model is interpretable by a domain
scientist and 6 has relatively few components and a fixed
dimensionality. Examples include coefficients found in the
Hamiltonian of a physical system, the virulence and incubation
rate of a pathogen, or fundamental constants of Nature.

e The latent variables z that appear in the data-generating pro-
cess may directly or indirectly correspond to a physically mean-
ingful state of a system, but typically this state is unobservable
in practice. The structure of the latent space varies substantially
between simulators. The latent variables may be continuous
or discrete and the dimensionality of the latent space may be
fixed or may vary, depending on the control flow of the sim-
ulator. The simulation can freely combine deterministic and
stochastic steps. The deterministic components of the simula-
tor may be differentiable or may involve discontinuous control

coLLOQUIUM
PAPER

STATISTICS

ENT DEVELOPMENTS

omputational cost of
running simulator

[K. Cranmer, JB, G. Louppe 1911.01429]
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echanistic models can be used to predict how systems

will behave in a variety of circumstances. These run the
gamut of distance scales, with notable examples including par-
ticle physics, molecular dynamics, protein folding, population
genetics, neuroscience, epidemiology, economics, ecology, cli-
mate science, astrophysics, and cosmology. The expressiveness of
programming languages facilitates the development of complex,
high-fidelity simulations and the power of modern computing
provides the ability to generate synthetic data from them. Unfor-
tunately, these simulators are poorly suited for statistical infer-
ence. The source of the challenge is that the probability density
(or likelihood) for a given observation—an essential ingredient
for both frequentist and Bayesian inference methods—is typi-
cally intractable. Such models are often referred to as implicit
models and contrasted against prescribed models where the like-
lihood for an observation can be explicitly calculated (1). The
problem setting of statistical inference under intractable likeli-
hoods has been dubbed likelihood-free inference—although it
is a bit of a misnomer as typically one attempts to estimate
the intractable likelihood, so we feel the term simulation-based
inference is more apt.

The intractability of the likelihood is an obstruction for scien-
tific progress as statistical inference is a key component of the
scientific method. In areas where this obstruction has appeared,
scientists have developed various ad hoc or field-specific meth-
ods to overcome it. In particular, two common traditional
approaches rely on scientists to use their insight into the sys-
tem to construct powerful summary statistics and then compare
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estimation methods are used to approximate the distribution of
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Likelihood-Free Inference Workshop

18-22 March 2019 @ Flatiron Institute, NYC

Home Schedule Hackathon Logistics Participants Registration

Rationale

The goal of this interdisciplinary meeting is to gather developers and users of Likelihood-Free
Inference methods to share latest techniques, use cases and applications across different
fields, and discuss open challenges.

The first two days of the workshop will be focused on talks and discussions, while the remaining
of the week will be dedicated to a hackathon with the goal of seeding the development of a
common probabilistic programming framework for Likelihood-Free Inference as well as
collaboratively working on LFl-related hack projects.

News

* March 4th, 2019 : Preliminary schedule available, new Gitter channel ERgiiiad, new
Hackathon page

* February 19th, 2019 : Main registration is closed, contact organizers for late registration

* February 19th, 2019 : Travel funding application deadline

* February 6th, 2019 : Opening registration

Organizing Committee

e Justin Alsing, Oskar Klein Center, Stockholm University
e Johann Brehmer, Center for Data Science, New York University
e Stephen Feeney, Center for Computational Astrophysics, Flatiron Institute

01429]
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Neuroscience example
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Activity recordings in stomatogastric ganglion

nerve cells in Jonah Crabs

[P. Goncalves et al., bioRxiv:10.1101.838383]

Extracellular Medium

Cm gn(t 9V) 8L

E, T E T

Intracellular Medium

Goal: infer 31 parameters of Hodgkin-
Huxley model of neuron dynamics
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C ra b reS U |tS [P. Goncalves et al., bioRxiv:10.1101.838383]

Bayesian posterior
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[Hubble Space Telescope]



Subhalos affect strong lensing

Smooth halo only
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Subhalos affect strong lensing

Smooth halo only Smooth halo + subhalo
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Subhalos affect strong lensing... realistically

Smooth halo only Smooth halo + subhalos

™
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Scalable inference for small subhalos
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Near-future telescopes and satellites will collect Goal: infer DM properties from all images
hundreds of lensing images (Collett et al 1507.02657] and all clumps at once
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M L' ba SEd Bayes i a n i nfe re n Ce [JB, S. Mishra-Sharma, J. Hermans, G. Louppe, K. Cranmer 1909.02005]
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Kyle Cranmer Gilles Louppe Felix Kling Irina Espejo Sinclert Perez

Sid Mishra-Sharma  Joeri Hermans Tilman Plehn Sally Dawson Sam Homiller Zubair Bhatti

Parts of this talk were inspired by great presentations by Kyle Cranmer, Gilles Louppe, Sid Mishra-Sharma, and Jakob Macke

N\SDSE

MOORE - SLOAN
@ DATA SCIENCE ENVIRON MENTS

II%% The SCAILFIN Project
scailfin.github.io

Institute for Research and Innovation
in Software for High Energy Physics
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precise predictions, side-stepped this enables powerful problems from the scales.
but inference is problem with inference methods, smallest...
challenging. summary statistics. especially when we

inject domain
information.
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Approximate Bayesian Computation (ABC)

Prior p(6)

|

Parameters ¢

}

e Compression to summary

S statistics and acceptance
Simulator threshold reduce quality of
inference
Observables x Observed data Zps e Rejection algorithm can be very
! ) sample inefficient

Summary statistics x’ Summary statistics xgbs

Compare, accept / reject <—|

|

Samples from posterior




High-dimensional density estimation with normalizing flows

O Q
o2 Do
O O
O O
Simple base density NN: transformation z = f(u) Target density is given by
u ~ m(u) e one-to-one and invertible p(x) =7 (f 1 (z)) |det V|

o differentiable

e f'and detVf aretractable

Train transformation by Transformation can depend on 6
maximizing log p(x) to model conditional density log p(x|0)



Inference with neural likelihood estimation

Parameters ¢

)
-

Simulator

Observables x

Q0O

Approximate likelihood p(x|0)

Confidence sets

|

|
!

» Unsupervised learning
O (e.g. normalizing flows)

Prior p(6) | —> Inference «— |Observed data

/ O\

Posterior

Conditional neural density estimator
as tractable surrogate for
simulator likelihood

Scales well to high-dimensional data

Amortized: After upfront simulation +
training phase, inference is efficient for new
data or prior

Related alternative: learn posterior p(6|zobs)



Inference by likelihood ratio trick

Parameters ¢

)
-

Simulator

Observables x

O

Approximate likelihood ratio 7(xz|6)

Confidence sets

|

|
!

o Supervised learning
C O (likelihood ratio trick)

Prior p(6) | —> Inference «— |Observed data

/ O\

Posterior

e Forinference, likelihood and
likelihood ratio are interchangeable

e Advantage: Learning the likelihood
ratio can be a simpler task than
learning the likelihood

e Disadvantage: Cannot sample from
likelihood ratio



Mining gold

Parameters 0

}
_

. Joint likelihood ratio r(x, z|0)
Simulator —

Joint score t(z, z|0)

Latent z

Observables &

|

o Supervised learning
O (with new loss functions)

|

Approximate likelihood ratio 7(x|@)

Q0O

!

Prior p(6/) | —> Inference «— |Observed data X },s

/ O\

Confidence sets Posterior




Step 1: Extracting more information from simulations

Parameters 0

_
. Joint likelihood ratio r(z, 2|0)
Simulator e
Joint score t(x, z|6)

Latent z

For each simulated event, calculate
Observables x
p(x, z|0)

+ joint likelihood ratio r(z, z/6) = ="

e jointscore (z, z|0) = Vg log p(z, z|6)



Step 2: Machine learning

Joint likelihood ratio r(x, z|0)
Joint score t(x, z|0)

Observables x

|

Supervised learning
(with new loss functions)

Approximate likelihood ratio 7(x|@)

e Train a neural network g(x,6)
on loss functionals like

Lig] = %Z 9(24,0;) — (24, 2:10;)|°

e The network will converge to

p(z|0)
Pret(T)

(for sufficient training data, NN capacity, efficient optimization)

g(x,0) — argmin L|g|] = r(x|0) =

e RASCAL:

Joint score adds
gradient
information

= three
orthogonal
pieces of
information

o

&
log r(x|6, 6,)

I
=
o

I
=
92
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Step 3: Inference

Approximate likelihood ratio 7(x|@)

!

Prior p(6/) | —> Inference «— |Observed data X },s
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Confidence sets Posterior




Mining gold from any simulation

e Computer simulation typically evolve along a tree-like
structure of successive random branchings Initial state

e The probabilities of each branching p;(z;|z;—1,0) are /\
often clearly defined in the code:
1f random() > 0.1 + 2.5 * model parameter: /\ ‘/l\
do one thing()
else:
<3
Final states /\/\ /\

do another thing()



Mining gold from any simulation

e Computer simulation typically evolve along a tree-like
structure of successive random branchings

e The probabilities of each branching p;(z;|z;—1,0) are
often clearly defined in the code:

1if random() > 0.1 + 2.5 * model parameter:

do one thing()
else:
do another thing()

e Foreach run of the simulator, we can calculate the
probability of the chosen path for different values
of the parameters, and the “joint likelihood ratio”:

p(z, z|0) p(zi|zi—1,00)
r(x, z|0p,01) = —
( 0, 61) p(z, z|01) 1:[ p(zi|zi—1,01)

Initial state

Final states

p(Z Zan())
M’Z 20,91)
p(Zz 21,90)
p(ZQ 217(91)
/?( 3|22, 0p)
p(z3)%2,01)
p(Z4 23790\
p(Z4 23,91)




The value of gold

Expectation value of the joint likelihood ratio:

< p(CC,ZH())
v ~D(Z|T y 6) 7‘9 — d 70
oy [ 210,00 = [ dz plefo 1) B0
[ Bzl plo.cll
— 2
p(z|01) p(z,z|01)
:T’(CE‘HQ,Hl)

With r(z, 2|00, 61), we define a functional like
L.|F(z|0y,01)] = /dx /dz p(z, z|601) [(f(x\«%,é’l) — T(x,z\ﬁg,ﬁl))z ,

It is minimized by

r(az\@o,é’l) — argmin Lr[f(af‘@(),@l)] '
fF(:c|90,61)

(And we can sample from p(z, z|0) by running the simulator.)



Machine learning = applied calculus of variatios
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we need to mimimize a functional numerically: l
r(x|0p, 01) =\arg min L..[7(x|0y,01)]
ff*(a:|90,61)
A neural network
trained in this way
will learn

the likelihood ratio function r(x|6g, 61)!



Machine learning = applied calculus of variatios

Variational family Functional with integral

So to get a good estimator of the likelihood ratio, Extremization
we need to mimimize a functional numerically: l

r(xz|0p, 01) =\arg min L..[7(x|0y,01)]
r(r|f0,01)

This is where machine learning comes in!

Loss function with
finite sum over samples

Neural network

Stochastic gradient descent

A neural network
trained in this way
will learn

the likelihood ratio function r(x|6g, 61)!




The local model

Taylor expansion of log p(x|f) around 0,..¢:

logp(xz|0) = log p(z|0,ef)
((9 — eref)

+ Vg log p(z|0) ,

N——
=t(x|Orer)

+ @, (((9 — Href)Q)

In the neighborhood of 0.t
e the score vector t(z|0.ef) is the sufficient statistics

e knowing t(z|0,.¢) is just as powerful as knowing the full
function log p(xz|0)

o {(x|0er) is the most powerful observable

The score itself is intractable. But we can use the same
trick as for the likelihood ratio!



Neural optimal observables (SALLY)

Parameters ¢

Simulator
Latent 2z

Observables &




Neural optimal observables (SALLY)

Parameters ¢

Joint score t(x, z|0ror)

_d
T
Simulator
Latent 2 l

o p Supervised learning
Observables £ ——> 5

Approximate score £(z|0,.cf)




Neural optimal observables (SALLY)

Parameters ¢

’ Joint score t(.flf, Z‘eref)

Simulator

Latent 2 l
}

Observables 7 o p Supervised learning
> G O

| !

Summary statistics ©’'«———— Approximate score £(z|0,.f)

|

u_I'I-LL'-L.q Classical density estimation

Approximate likelihood p(z’|6)




Neural optimal observables (SALLY)

Parameters ¢

’ Joint score t(.flf, Z‘eref)

Simulator

Latent 2 l
}

p Supervised learning

Observables :13—>8 o

| !

Summary statistics ©’'«———— Approximate score £(z|0,.f)

|

u_I'I-LL'-L.q Classical density estimation

Approximate likelihood p(z’|6)

!

/
obs

Prior p(@) ——> |nference e—m8MmMm ————— Summary statistics x <«—— Observed data oqpg

/ O\

Confidence sets Posterior




Frequentist inference

Observed data
Lobserved

eref

>

Parameter space to constrain



Frequentist inference

Observed data
{$t0y} > {log T(ftoy |97 Qfef)} Lobserved

N\

p(log 7|6

eref

. loor(x|0.0
Parameter space to constrain g7(x|0, Oret)
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Observed data
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Frequentist inference

Observed data
{wtoy} > {log 72($toy |97 erf)} Lobserved

N\

0 Asymptotic properties log 72( Tobserved ‘(97 6. f)
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Frequentist inference

Observed data
{$toy} > {lOg 72($toy |97 efef)} Lobserved

N\

0 Asymptotic properties 10g 72( Tobserved \6’, 6. f)

[
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eref
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Parameter space to constrain g7(x|0, Oret)

p-value



Frequentist inference

Observed data
{33toy} > {lOg 72($toy |97 9ref)} Lobserved

\
Asymptotic properties

..... of likelihood ratio

log 72(370bselrved ‘6,7 Qref)

Exclusion contours
at given confidence level

. loor(x|0.0
Parameter space to constrain g7(x|0, Oret)

p-value



Calibration

What if the NN likelihood ratio estimator #(x|0y, 0;) is off? Calibrate!

ﬁhistogram ( ﬂ 90 )

ﬁhistogram(?(x 0o, 91)‘90) 7(x|6o, 61)

Tc(X 90, 61)

?calibrated(X‘GOa 91) —

7(x|0,01)



Bonus material: particle physics



LHC footnotes

o FullLHClikelihood:  pran({z}|0) = Pois(n|La(0)) || p(]6)

events &



LHC footnotes

o FullLHClikelihood:  pri({z}|0) = Pois(n|La(0)) || »(z|0)

events &

Total rate term:

e How likely is it to observe n events after cuts?

e “Easy”to compute

e Forsimplicity, we ignore this part in this talk
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o FullLHClikelihood:  pri({z}|0) = Pois(n|La(0)) || »(z|0)

events x T
Total rate term: Kinematic term for each event:
e How likely is it to observe n events after cuts? e How likely is it that an event looks like it does?
e “Easy”to compute e ~normalized differential xsec
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e Focus of this talk
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LHC footnotes

o FullLHClikelihood:  pran({z}|0) = Pois(n|La(0)) || p(]6)

events x T
Total rate term: Kinematic term for each event:
e How likely is it to observe n events after cuts? e How likely is it that an event looks like it does?
e “Easy”to compute e ~normalized differential xsec
e Forsimplicity, we ignore this part in this talk e Thisis the intractable part of the likelihood

e Focus of this talk

e FEvent selection:

e Choice of cuts shifts information between rate and kinematic part
e “Good”cuts depend on inference strategy

e This talk: assume fixed event selection

63/57
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Modelling particle physics processes

Parton-level Theory
momenta parameters

Zp —

q q
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Modelling particle physics processes

Shower Parton-level Theory
splittings momenta parameters

2y —— 2, ———

Evolution



Modelling particle physics processes

| atent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

2 —— 2y — 2 — )

Key: Muon

u
e El e trO

e Charged Hadron {e.g. Pion)
— — — - Neutral Hadron {e.g. Neutron)
=== e« Photon

[ —
T
C
T
C
[ .

Evolution
64/45



Modelling particle physics processes

Detector
Shower Parton-level The
ory
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Modelling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from p(a)za) p(zalzs) p(2s)2) p(20)

TTTTTTTTTTTTTTTT

Prediction (simulation)



Modelling particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

L
pald) = [dza [dz, [dz, plolzo p(zalzs) plza) ) p(20)
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Inference



Modelling particle physics processes

| atent variables

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous
spacel

(More subtle: We cannot sample
from p(z|x, 0) efficiently.)

Inference
64/45



Mining gold from the simulator

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 — 2y — 2 — )

p(z|0) = /dzd/sz/dzp p(x|zq) p(zq|zs) p(2s|2p) p(2p|0)

Intractable integrals



Mining gold from the simulator

| atent variables

Detector Shower Parton-level Theory

Observables . . L
interactions splittings momenta parameters

2y ——— 2y ——— 2, ———————— )

XL
pal6) = [z [z, [az, plalza p(zal2) Pzl p(z10)

Parton-level likelihood
is given by matrix element
and can be evaluated!

= For each simulated event, we can calculate the joint likelihood ratio which depends on the specific
evolution of the simulation:

r(x,z\é’o,ﬁl) _ p(xazdazsazp 90) _ p($ Zd) p(Zd Zs) p(zs Zp) p(Zp 6’0) N M(Zp 90) °

p(x, 2d, 25, 2p|01)  plx|za) p(zalzs) p(2s12,) | P(2pl01)  [IM(2,|01)]
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The value of gold

We can calculate the joint likelihood ratio

p(ﬂf, Zdy 25y Ap (90)
p(ma Zdy 25y AP 91)

T(iE, Z‘HOa ‘91) =

We want the likelihood ratio function

_ p(z|6o)
T(Q?‘@Q,@l) — p(w 91)

(“How much more likely is this simulated event, including
all intermediate states, for 8 compared to 61?")

(“How much more likely is the observation x
for 8o compared to 6,?")
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The value of gold

We can calculate the joint likelihood ratio

r(x, z|0y,01) = b

(1), Zdy <5y Ap 90)

p(ﬂ?, Zdy <5y Ap (91)

r(x, 2|0y, 0,)are
scattered around
7“($|(9(), (91)

r(Xe, Ze|6o, 01), r(x|6o, 61)

We want the likelihood ratio function

X
r(z|0y,01) = P

o)

p(x

01)

1 = r(X|90r 91)

O

r(x, z|6p, 01), X ~ p(x|6 = By)

r(x, z|6o, 61), x ~ p(x|6 = 61)
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The value of gold

We can calculate the joint likelihood ratio

p(xa Zdy <5y Ap 90)
p(ﬂf, Zdy <5y Ap (91)

r(x, z|0y,01) =

With r(z, 2|00, 61), we define a functional like

L [7(alfo,00)) = [do [ dzpla,2161) [(7(albo. 00) (2. 2100.00)°].
It is minimized by

r(x|0y,01) = argmin L, |7 (xz|0p, 01)]!
f($|90,91)

(And we can sample from p(x, z|0) by running the simulator.)

We want the likelihood ratio function

_ p(z|6o)
TN




Bonus material: gravitational lensing



Overview

642 observables &

2 parameters 0 = (5, fsub)

Simulator

. ()

Latent 2 :
sub source / lens properties,
subhalo masses / positions, ...

Prediction: We construct a simulator that can sample x ~ p(z|6)

e —————
Inference:  We train neural likelihood ratio estimators #(x|0)



Proof-of-principle simulator

Spherical lensing host galaxies

Extended galaxy sources

Euclid detector model

Poisson fluctuations

Subhalos follow mass
distribution with two

parameters
dn
dmsub 7<
N
m



Inference setup

Parameters 0

}
_

Simulator

Observables &

|

Train NN classifier

Q0O

S (likelihood ratio trick

+ mining gold)

Approximate likelihood ratio 7(x|0)

Prior p(6) | —> Inference «— |Observed data s

Confidence sets

|
!

/ O\

Posterior

Training data: 106 lensed images with
0 < foup <0.2,-1.5<B<-0.5

Convolutional neural network (modified ResNet-18)
trained on ALICES loss

Calibration of network output

Synthetic “observed” data set: f,,;, = 0.05, 56 = —0.9

Bayesian & frequentist inference



LHC footnotes

o FullLHClikelihood:  pran({z}|0) = Pois(n|La(0)) || p(]6)

events x T
Total rate term: Kinematic term for each event:
e How likely is it to observe n events after cuts? e How likely is it that an event looks like it does?
e “Easy”to compute e ~normalized differential xsec
e Forsimplicity, we ignore this part in this talk e Thisis the intractable part of the likelihood

e Focus of this talk

e FEvent selection:

e Choice of cuts shifts information between rate and kinematic part
e “Good”cuts depend on inference strategy

e This talk: assume fixed event selection
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Inferring parameters from individual images

-0.6 -
-0.8 -
©-1.0 - -
-1.2 -

-1.4 - J

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
fsub fsub fsub fsub




Expected likelihood ratio map

1.0 -
0.9 -
0.0

AV E—

0.10

0.05

0.00

0.15 0.20

0.10
fsub

fsub
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All the things we didn't do

e More involved subhalo mass function

e Warm DM with DM mass as parameter

e Realistic simulators
e More diverse source and host galaxies
e Realistic subhalo modelling
e Line-of-sight substructure

e Realistic observation model

e Use auxiliary information during inference

e FEvaluation on real data

= Our method should scale to a realistic setting, but will require more simulations and careful sanity checks



Bonus material: Z-flows



M-flows [JB, K. Cranmer 2003.13913]

Often data is restricted to a lower-dimensional manifold
embedded in the data space

M-flows are a new probabilistic / generative model that

e describe data as a tractable probability density on a
lower-dimensional manifold

e learn manifold and density from data
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M-flows

Often data is restricted to a lower-dimensional manifold

embedded in the data space

M-flows are a new probabilistic / generative model that

e describe data as a tractable probability density on a

lower-dimensional manifold

e learn manifold and density from data

(x)d

<+

X0

avavi

[JB, K. Cranmer 2003.13913]
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M-ﬂ OWS [JB, K. Cranmer 2003.13913]

Often data is restricted to a lower-dimensional manifold
embedded in the data space

M-flows are a new probabilistic / generative model that

e describe data as a tractable probability density on a
lower-dimensional manifold

e learn manifold and density from data

(x)d
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The manifold hypothesis

Data often live on a n-dimensional manifold
embedded in the d-dimensional ambient space

e Robotarms, molecules: limited degrees of freedom

e Particle physics: energy-momentum conservation,
on-shell conditions, redundant observables

e Many other high-dimensional datasets (e.g. images):

empirical evidence for (approximate) data manifold
[L. Cayton 2005; ...]

[Original meme by K. Zack]

77/45



Generative adversarial networks (GANs) 1. Goodfellow et al 1406.2661]

pu(u)

y:

u
e T
9
unconstrained NN implicit density over M

pam () intractable
/8/45



Normalizing flows in the ambient data space (G. Papamakarios et al 1912.02762]

Uy
(270
U ~ Py (1) f T
. . tractable density over
d invertible NN y

ambient data space

pa(z) = pu(f~ (2)) [det Jp(f~ (2))|
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FlOWS OoONna prescribed manifold [M. Gemici et al 1611.02304; D. Rezende et al 2002.02428]

gl
=~

U~ pg () — U —> X
h g°
n invertible NN n prescribed chart tractable density over M~

pat () = pa(@) |det Jy (@)™

| det[TZ. (u) Ty (w)]]
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M'ﬂ OWS [JB, Kyle Cranmer 2003.13913]

Puv (U, V)
pa(u Pu (1)
LY
% %
> 0
u u
(Y
Zero-pad
U~ pg(u) +—— U — (u, v) — T
h Project f
n inv.NN n embed inv. NN tractable density over M

pm(@) = pa(d) | det Jp (@)™

det [(]1 0)Ty ()" J¢(u) <g>]

1
2
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Evaluating data on or off the manifold

P (@)
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Evaluating data on or off the manifold
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Evaluating data on or off the manifold
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Evaluating data on or off the manifold

pa(t) .,
e
Proj:
v
O -
it AR ERS
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Input x ~» Representation u (dimensionality reduction)




Evaluating data on or off the manifold

%

Input x ~» Representation u (dimensionality reduction)

~» Projection to manifold z’ (denoising)




Evaluating data on or off the manifold

~

Input x ~» Representation u (dimensionality reduction)

~» Projection to manifold z’ (denoising)

~» Reconstruction error ||z — 2’| (training, OOD detection)




Evaluating data on or off the manifold

\ yNA o

~

~» Representation u (dimensionality reduction)
~» Projection to manifold z’ (denoising)

~» Reconstruction error ||z — 2’| (training, OOD detection)

~» Likelihood after projection pa(z) (training, inference)




Generative models vs. the data manifold

Model

Ambient flow (AF)

Flow on prescr. manifold
GAN

VAE

M -flow

Manifold

prescribed
learned
learned

learned

Chart

prescribed

learned

Generative

Tractable density

4

4

Y (potentially slow)

Restr. to manifold



Maximum likelihood is not enough

Likelihood defined after projection to M,
which is defined through NN weights ¢/

Family of likelihoods pg, (x|¢s)
rather than one likelihood p(x|¢¢, on)

= Learning ¢ s by maximum
likelihood is unstable



Maximum likelihood is not enough

Likelihood defined after projection to M,
which is defined through NN weights ¢/

Family of likelihoods pg, (x|¢s)
rather than one likelihood p(x|¢¢, on)

= Learning ¢ s by maximum
likelihood is unstable
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Maximum likelihood is not enough

Likelihood defined after projection to M,
which is defined through NN weights ¢+

Family of likelihoods pe, (z|¢p)
rather than one likelihood p(x|¢¢, on)

= Learning ¢ s by maximum

Naive likelihood

likelihood is unstable




M/D training

Solution: separate training in two phases!

e Manifold phase:
update ¢ (and thus M) by minimizing ||z — 2|

/2

Reconstruc

On =0
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M/D training

Solution: separate training in two phases!

e Manifold phase: e Density phase:
update ¢ (and thus M) by minimizing ||z — 2’|| update ¢ (and thus pam(z)) by maximum likelihood
(keeping M fixed)

/2 /2

Likelihood relative to

Reconstru MLE for e

On =0
Oy =0
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A second problem... and an accidental solution

The likelihood becomes expensive to evaluate for high-dimensional x:

log pp () = log pa(h™" (u)) — logdet Jy, (h™" (u)) — %log et _(]1 0) Ty () Ty () @)_

Cannot separate determinant of
product of non-square matrices

M/D training sidesteps this problem: density phase only requires gradient

V., (logpm(z)) = V., (logpa( )) = V., (log det ) = Von g log det _(]1 0) Ty (@) J5(u) <O>_

which can be computed efficiently!



Gaussian on a circle

AF PIE \
m —4
-5
| —6
FOM M-flow (M/D) M-flow (AE)
/\ B
| \

|

o

I I
N =

Log likelihood

I
w

Log likelihood



Mixture model on a polynomial surface

Ground truth, 6 =0 M-flow (M/D), 6 =0 M-flow (OT), 6=0

/
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Lorenz attractor
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Lorenz attractor

\/

X
|
-

dx dz dx
—O:a(xl—xo), —1=xo(p—$2)—$1, —225130331—5332-

dt dt



LO renz attraCtOr [E. Lorenz 1963]

= ToX1 — ,sz .
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Particle physics: structure

q q
WﬂZ‘S} - {:7
w,zg{ !

— —

q q

particle masses

redundant (“on-shell condition”)

observables

14-dimensional manifold
embedded in 40-dimensional
data space

Original
e« M-flow

n‘/ V
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AF (S)

Particle physics: results

PIE (S)

M-flow (S)

Me-flow (S)

LR (A)

s‘_‘.;
6 O B * { ) ‘ @‘; ;:‘
—_— 1 -
1 —
—
o 0- | _ .3
- o = A vo® -
-1- & & s
1 I ] — T 1 ~T | T 1 |
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Image manifolds

Q: How to make image datasets where we
know that data lives on an n -dimensional

manifold?

A: take a pretrained GAN model, sample n of its
latent variables, and keep all others fixed

StyleGAN latent variable z;

S
|
DO

DD
GAoDDD

DDD

¢
. f

DD D

~
Yk

ke
R O

'{:;\. H.}' Ly

- BEDDDDD

B0

—1
StyleGAN latent variable zg
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Samples

Test data

Ours



Projections to learned manifolds

Test data
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Baseline

‘load moy-wy

Ours

‘'S9J MO|J-V




ages: CelebA samples

m

-world i

Real
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CelebA projections

©
Test data S
S
Baseline
15
S
=
o
3
Ours

M-flow res.
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