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■ Introduction 

■ Methodology 

■ Global analysis of DVCS data - “classic” approach  

■ Global analysis of DVCS data - ANN approach 

■ Summary
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factorization for |t|/Q2 ≪ 1

for sum over 
parton helicities

for difference over 
parton helicities

nucleon helicity 
changed

Chiral-even GPDs: 
(helicity of parton conserved)

nucleon helicity  
conserved

Deeply Virtual Compton Scattering (DVCS)

Introduction
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GPDs accessible in various production channels and observables  
→ experimental filters
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Deeply Virtual Compton 

Scattering

more production channels sensitive to GPDs exist!

Introduction

TCS 
Timelike Compton 

Scattering

HEMP 
Hard Exclusive Meson 

Production
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■ Nucleon tomography

x

x

b⊥

■ Study of long. polarization with GPD H  

■ Study of distortion in transv. polarized nucleon with GPD E

Introduction

~
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Access to total angular momentum and “mechanical” forces acting on quarks

Energy momentum tensor in terms of form factors:

Introduction

Ji's sum rule

Paweł Sznajder / Prospects for extraction of GPDs / Jan 24, 2019 !6Paweł Sznajder / Towards extraction  of GPDs / Mar 6, 2019 !6



exclusiveSIDIS and DY

elasticDIS, SIDS and pp

Introduction
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Neural Networks
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■ Data processing technique inspired by Nature 

■ Network made out of simple but highly connected elements → 
connectionists system 

■ Many variations, but most popular deep feed-forward ANNs 
■ data processed layer by layer  

input layer → hidden layers→ output layer 
■ generalisation capability given by consecutive hidden layers 

output of i-1 layer is more refined than that of i layer 

■ Information containers 

Artificial neural networks (ANNs)



Single neuron (perceptron)
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3 → 1

PARTONS	Fits	NN	2018
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Training
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■ Define training sample 

■ Define cost function, e.g. 

■ Cost function analytically differentiable w.r.t. each parameter  
of the network 
→ straightforward minimisation of cost function  

■ If not possible, e.g. because ANN not connected directly to 
training sample 
→ compute gradient of cost function numerically  
→ use genetic algorithm

RMSE = ∑
i

(vi − v̄i)2
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Genetic Algorithm
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generation of 
initial population

evaluation

crossover

mutation

1 23
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■ Heuristic technique inspired by Nature 

■ Used in physics, mathematics, engineering, manufacturing  

■ Ability to 
■ minimise w.r.t large number of free parameters 
■ solve non-differentiable and non-linear problems 
■ avoid local minima 

■ Iterative algorithm  



H. Moutarde, P. S., J. Wagner "Border and skewness functions from a leading order fit to DVCS data" 
Eur. Phys. J. C78 (2018) 11, 890 

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using LO/LT formalism 

Analysis done within PARTONS project

Analysis
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Compton Form Factors

■ imaginary part

"−" for

■ real part

"+" for
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connected to EMT FF



Subtraction Constant

Subtraction constant as analytic continuation of Mellin moments to j = -1 

Analytic regularization prescription

applicable if f(x) analytic and not-vanishing at x = 0
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Ansatz for H and H

■ reduction to PDFs and correspondence to EFFs 
■ modify "classical" log(1/x) term by BG

q(1-x)2 in low-x and by CG
q(1-x)x in high-x regions 

■ polynomials found in analysis of EFF data → good description of data 
■ allow to use the analytic regularisation prescription 
■ finite proton size at x → 1

~
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■ at x → 0 constant skewness effect 
■ at x → 1 reproduce power behaviour predicted for GPDs in Phys. Rev. D69, 051501 (2004) 
■ t-dependence similar to DD-models with (1-x) to avoid any t-dep. at x = 1
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uval

×
4

∑
i=0

g(pi, qi, Q2)xi

pdf(x, Q2) = x−g(δp,δq,Q2)(1 − x)α

g(p, q, Q2) = p + q log
Q2

Q2
0

CLAS x-sec.

1. Analysis of  
PDF parameterisations

2. Analysis of  
Elastic Form Factor data

3. Analysis of  
DVCS data



Results

Subtraction constant:
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no uncertainties!

Results

Nucleon tomography:
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Results

Nucleon tomography:
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H. Moutarde, P. S., J. Wagner “Unbiased determination of Compton Form Factors” 
preliminary results 

Goal: global extraction of Compton Form Factors (CFFs) from DVCS data using ANN technique 

Analysis done within PARTONS project

Analysis
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NN architecture
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How many perceptrons needed to represent CFF sample? 
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Exercise done with 1000 randomly generated CFF points  
using GK GPD model 

Input and output variables are normalised and linearised 

PARTONS	Fits	NN	2018
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Regularisation
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Need for regularisation:
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(a) under-fitting

(b) proper fitting

(c) over-fitting

Supervised training:

■ Divide your sample into training and test subsamples (e.g. 3:1) 
■ use training subsample for ANN training 
■ used test subsample to detect over-fitting  

■ Many regularisation techniques available  
■ early stopping used in this analysis

training epoch

fcost training sample
test sample

over-fitting

under-fitting

bad description of training sample 
no prediction power

good description of training sample 
prediction power

good description of training sample 
no prediction power



Performance:

Replication of experimental data to propagate 
corresponding uncertainties:

Input data
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χ2/nPoints = 2243.5/2624 ≈ 0.85



Feasibility test
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@ t = -0.3 GeV2, Q2 = 2 GeV2

GKthis analysis 
(pseudodata)

■ Pseudo-data generated with GK model  

■ Kinematics corresponding to real data 

■ Pseudo-data smeared according  
to uncertainty of real data 

■ χ2 / nPoints:  
all:                           2957.2 / 2624 ≈ 1.13 
without low-x data:  2765.1 / 2599 ≈ 1.06
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CLAS data
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CLAS data 
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Hall-A data
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Phys. Rev. C92(5), 055202 (2015)
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Inclusion of low-x data
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@ t = -0.3 GeV2, Q2 = 2 GeV2
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Note: sparsity of low-x data makes supervised training difficult 
          → see next slide



Inclusion of low-x data
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Without decent coverage of phase-space   
supervised training is challenging 
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replica A

replica B

training sample

test sample

overfitted

overshoot
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Results
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Results
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@ t = -0.3 GeV2, Q2 = 2 GeV2
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Subtraction constant
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as function of ξ 
@ |t| = 0.3 GeV2, Q2 = 2 GeV2

as function of Q2 
@ ξ = 0.2, |t| = 0.3 GeV2

as function of |t| 
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■ Direct extraction of subtraction constant → encouraging precision 
■ As expected, no ξ behaviour observed  
■ Strong, model independent constraints on modeling of this quantity



SUMMARY

■ Parameterizations of border and skewness function  

     → basic properties of GPD as building blocks 

     → small number of parameters 

     → encoded access to nucleon tomography and subtraction constant   

■ Neural network parameterization of CFFs 
→ powerful tool to study GPDs 
→ model independent 
→ many applications:   
   → extraction of subtraction constant 

       → analysis of TCS 

       → impact of future experiments 

       → fast generation of DVCS cross sections 

       → … 
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■ Need more tools to visualise and compare multi-dim. distributions →  Center for Nucl. Femtography



PARTONS	Fits	NN	2018
preliminary

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-1.5

-1

-0.5

0

0.5

1

ξ	
Im
ℰ

PARTONS	Fits	NN	2018
preliminary

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-20

-15

-10

-5

0

5

10

R
eℰ

Results

Paweł Sznajder / Prospects for extraction of GPDs / Jan 24, 2019 !34Paweł Sznajder / Towards extraction  of GPDs / Mar 6, 2019 !34

VGG

GKPARTONS 2018

this analysis

ReE ImE

@ t = -0.3 GeV2, Q2 = 2 GeV2



PARTONS	Fits	NN	2018
preliminary

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-1000

-500

0

500

1000

R
eℰ

PARTONS	Fits	NN	2018
preliminary

10-6 10-5 10-4 10-3 10-2 10-1 100

ξ

-10

-5

0

5

10

ξ	
Im
ℰ

Results

Paweł Sznajder / Prospects for extraction of GPDs / Jan 24, 2019 !35Paweł Sznajder / Towards extraction  of GPDs / Mar 6, 2019 !35

VGG

GKPARTONS 2018

this analysis

ReE ImE

@ t = -0.3 GeV2, Q2 = 2 GeV2

~ ~

~ ~



Slope exp(bt)
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@ Q2 = 10 GeV2

dσγ*p

dt
∝ exp(b × t)

Under assumption of ImH dominance 
observable directly related to nucleon tomography 

Estimation of slope from ANN replicas difficult 



Early stopping
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min
j<i

f av
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− 1

f av
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fcost(ti)+
n
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(fcost(ti−j) + fcost(ti+j))
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> 0 for more than 100 iterations

■ Stop training if

■ Running average to suppress  
fluctuations: 

training sample
training sample (avg.)
test sample
test sample (avg.)

stop here


