Methods for high-precision determinations of radiative-leptonic decay form factors using lattice QCD

Speaker: Christopher Kane¹

In collaboration with: Davide Giusti², Christoph Lehner², Stefan Meinel ¹, Amarjit Soni³

Jefferson Lab Theory Seminar

Date: September 11, 2023

¹University of Arizona

²University of Regensburg

³Brookhaven National Lab

Main Take-Away Point 1: Radiative leptonic decays are interesting in the regions of small and large photon energies

Main Take-Away Point 2: We have developed methods to achieve high precision for small computational cost

for more details: D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:[2302.01298]

Main Take-Away Point 3: Working on physical calculation of $D_s \rightarrow \gamma \ell \nu_\ell$, out soon

Table of Contents

- **1** Introduction and Motivation
- **2** Extracting the hadronic tensor with Euclidean correlation functions
- 3 Methods study
- **4** $D_s \rightarrow \ell \nu_\ell \gamma$ preliminary form factor results

Outline for section 1

1 Introduction and Motivation

2 Extracting the hadronic tensor with Euclidean correlation functions

3 Methods study

4 $D_s \rightarrow \ell \nu_\ell \gamma$ preliminary form factor results

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

• $H^+ \to \gamma \ell^+ \nu_\ell$, $H^- \to \gamma \ell^- \bar{\nu}_\ell$

Schematic diagram for $D_s^+
ightarrow \gamma e^+
u_e$

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

•
$$H^+ \to \gamma \ell^+ \nu_\ell$$
, $H^- \to \gamma \ell^- \bar{\nu}_\ell$

Schematic diagram for $D_s^+
ightarrow \gamma e^+
u_e$

Flavor changing neutral current (FCNC)

•
$$H^0 \rightarrow \gamma \ell^+ \ell^-$$

Schematic diagram for $B^0_s \to \gamma \ell^+ \ell^-$

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

•
$$H^+ \to \gamma \ell^+ \nu_\ell$$
, $H^- \to \gamma \ell^- \bar{\nu}_\ell$

Schematic diagram for $D_s^+
ightarrow \gamma e^+
u_e$

Flavor changing neutral current (FCNC)

•
$$H^0 \rightarrow \gamma \ell^+ \ell^-$$

Schematic diagram for $B^0_s \to \gamma \ell^+ \ell^-$

Knowledge of structure dependent QCD form factors are of interest for both small and large photon energies

Regions of small photon energies

Determinations of CKM matrix elements $V_{q_1q_2}$ require meson decay constants f_H

$$\Gamma(H \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_H^2}\right)^2 m_H f_H^2, \qquad \langle 0|A_{\mu}|H \rangle = i p_{\mu} f_H$$

Determinations of CKM matrix elements $V_{q_1q_2}$ require meson decay constants f_H

$$\Gamma(H \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_\ell^2 \left(1 - \frac{m_\ell^2}{m_H^2}\right)^2 m_H f_H^2, \qquad \langle 0|A_\mu|H\rangle = i p_\mu f_H$$

Measure $\Gamma(H \rightarrow \ell \nu)$ experimentally Calculate f_H with lattice QCD

determine
$$|V_{q_1q_2}|^2$$

Determinations of CKM matrix elements $V_{q_1q_2}$ require meson decay constants f_H

$$\Gamma(H \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_\ell^2 \left(1 - \frac{m_\ell^2}{m_H^2}\right)^2 m_H f_H^2, \qquad \langle 0|A_\mu|H\rangle = i p_\mu f_H^2$$

Measure $\Gamma(H \to \ell \nu)$ experimentally Calculate f_H with lattice QCD

determine
$$|V_{q_1q_2}|^2$$

- Sub-percent precision for f_H require $\mathcal{O}(\alpha_{em})$ electromagnetic corrections $H \to \ell \nu(\gamma)$
- Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$ \rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

Determinations of CKM matrix elements $V_{q_1q_2}$ require meson decay constants f_H

$$\Gamma(H \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_H^2}\right)^2 m_H f_H^2, \qquad \langle 0|A_{\mu}|H \rangle = i p_{\mu} f_H^2$$

 $\left. \begin{array}{l} \text{Measure } \Gamma(H \rightarrow \ell \nu) \text{ experimentally} \\ \text{Calculate } f_H \text{ with lattice QCD} \end{array} \right\} \quad \text{determine } |V_{q_1q_2}|^2$

• Sub-percent precision for
$$f_H$$
 require $\mathcal{O}(\alpha_{em})$ electromagnetic corrections $H \to \ell \nu(\gamma)$

• Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$ \rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

Approx. π^-, K^- as point-like

•
$$\pi^-
ightarrow \mu^- \bar{
u}_\mu \gamma$$
 and $K^-
ightarrow \mu^- \bar{
u}_\mu \gamma$

[N. Carrasco et. al, PRD 2015 / arXiv:1502.00257]

Determinations of CKM matrix elements $V_{q_1q_2}$ require meson decay constants f_H

$$\Gamma(H \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{q_1 q_2}|^2 m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_H^2}\right)^2 m_H f_H^2, \qquad \langle 0|A_{\mu}|H \rangle = i p_{\mu} f_H^2$$

 $\left. \begin{array}{l} \text{Measure } \Gamma(H \to \ell \nu) \text{ experimentally} \\ \text{Calculate } f_H \text{ with lattice QCD} \end{array} \right\} \quad \text{determine } |V_{q_1q_2}|^2$

• Sub-percent precision for
$$f_H$$
 require $\mathcal{O}(\alpha_{em})$ electromagnetic corrections $H \to \ell \nu(\gamma)$

• Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$ \rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

6/41

Approx. π^-, K^- as point-like • $\pi^- \to \mu^- \bar{\nu}_{\mu} \gamma$ and $K^- \to \mu^- \bar{\nu}_{\mu} \gamma$ [N. Carrasco et. al, PRD 2015 / arXiv:1502.00257] • $\pi^- \to e^- \bar{\nu}_e \gamma$ and $K^- \to e^- \bar{\nu}_e \gamma$

Regions of large photon energies

- Hard photon removes helicity suppression $(m_\ell/m_B)^2$
- This process sensitive to all operators in the $b \rightarrow s\ell^+\ell^-$ weak effective Hamiltonian including O_9 , where slight tension with SM prediction exists

[Greljo, Salko, Smolkovic, Stangl, JHEP 2023 / arXiv:2212.10497]

- Hard photon removes helicity suppression $(m_\ell/m_B)^2$
- This process sensitive to all operators in the $b \rightarrow s\ell^+\ell^-$ weak effective Hamiltonian including O_9 , where slight tension with SM prediction exists

[Greljo, Salko, Smolkovic, Stangl, JHEP 2023 / arXiv:2212.10497]

•
$$\mathcal{B}(B^0 o\ell^+\ell^-\gamma)<\mathcal{O}(10^{-7})$$
 for $\ell=e,\mu$ [BABAR: PRD 2008 / arXiv:0706.2870]

• $\mathcal{B}(B^0_s o \mu^+\mu^-\gamma) < 2.0 imes 10^{-9}$ for $m_{\mu\mu} > 4.9$ GeV [LHCb: PRD 2022 / arXiv:2108.09283]

FCCC process $B^- \rightarrow \gamma \ell^- \bar{\nu}$

- ullet Hard photon removes helicity suppression $(m_\ell/m_B)^2$
- For large E_γ⁽⁰⁾, simplest decay that probes the inverse moment of the B meson lightcone distribution amplitude

$$rac{1}{\lambda_B} = \int_0^\infty d\omega \; rac{\Phi_{B+}(\omega)}{\omega}$$

• λ_B important input in QCD factorization approach to exclusive B decays, currently not well known [See e.g., Beneke, Braun, Ji, Wei, arXiv:1804.04962/JHEP 2018;

Beneke, Buchalla, Neubert, Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

FCCC process $B^- \rightarrow \gamma \ell^- \bar{\nu}$

- \bullet Hard photon removes helicity suppression $({\it m_\ell}/{\it m_B})^2$
- For large $E_{\gamma}^{(0)}$, simplest decay that probes the inverse moment of the B meson lightcone distribution amplitude

$$rac{1}{\lambda_B} = \int_0^\infty d\omega \; rac{\Phi_{B+}(\omega)}{\omega}$$

• λ_B important input in QCD factorization approach to exclusive B decays, currently not well known [See e.g., Beneke, Braun, Ji, Wei, arXiv:1804.04962/JHEP 2018;

Beneke, Buchalla, Neubert, Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

• Belle: $\mathcal{B}(B^+ o \ell^+
u \gamma) < 3.0 imes 10^{-6} \ (E_{\gamma}^{(0)} > 1 \ {
m GeV})$ [arXiv:1810.12976/PRD 2018]

•
$$K^- \to e^- \bar{\nu} \gamma$$
, $K^- \to \mu^- \bar{\nu} \gamma$, $\pi^- \to e^- \bar{\nu} \gamma$, $\pi^- \to \mu^- \bar{\nu} \gamma$

 $\rightarrow K^-, \pi^-$ partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]

• $K^- \rightarrow e^- \bar{\nu}\gamma$, $K^- \rightarrow \mu^- \bar{\nu}\gamma$, $\pi^- \rightarrow e^- \bar{\nu}\gamma$, $\pi^- \rightarrow \mu^- \bar{\nu}\gamma$ $\rightarrow K^-, \pi^-$ partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]

•
$$D_s^+ o e^+
u \gamma$$
: $\mathcal{B}(E_\gamma^{(0)} > 10 \; {
m MeV}$) $< 1.3 imes 10^{-4}$ [BESIII: PRD 2017 / arXiv:1702.0583]

• $D^+ o e^+
u \gamma$: $\mathcal{B}(E_{\gamma}^{(0)} > 10 \; {
m MeV}$) $< 3.0 imes 10^{-5}$ [BESIII: PRD 2019 / arXiv:1902.03351]

- $K^- \rightarrow e^- \bar{\nu}\gamma$, $K^- \rightarrow \mu^- \bar{\nu}\gamma$, $\pi^- \rightarrow e^- \bar{\nu}\gamma$, $\pi^- \rightarrow \mu^- \bar{\nu}\gamma$ $\rightarrow K^-, \pi^-$ partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]
- $D_s^+ o e^+
 u \gamma$: $\mathcal{B}(E_{\gamma}^{(0)} > 10 \; {
 m MeV}$) $< 1.3 imes 10^{-4}$ [BESIII: PRD 2017 / arXiv:1702.05837]
- $D^+ o e^+
 u \gamma$: $\mathcal{B}(E_{\gamma}^{(0)} > 10 \; {
 m MeV}$) $< 3.0 imes 10^{-5}$ [BESIII: PRD 2019 / arXiv:1902.03351]
- $\mathcal{B}(B^+ o \ell^+
 u \gamma) < 3.0 imes 10^{-6}~(E_{\gamma}^{(0)} > 1~ ext{GeV})$ [Belle: PRD 2018 / arXiv:1810.12976]
- Belle II expected to measure $\mathcal{B}(B^+ \to \ell^+ \nu \gamma)$ with 3.6% statistical uncertainty [Belle: PRD 2018 / arXiv:1810.12976]

- $K^- \rightarrow e^- \bar{\nu}\gamma$, $K^- \rightarrow \mu^- \bar{\nu}\gamma$, $\pi^- \rightarrow e^- \bar{\nu}\gamma$, $\pi^- \rightarrow \mu^- \bar{\nu}\gamma$ $\rightarrow K^-, \pi^-$ partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]
- $D_s^+ o e^+
 u \gamma$: $\mathcal{B}(E_{\gamma}^{(0)} > 10 \; {
 m MeV}$) $< 1.3 imes 10^{-4}$ [BESIII: PRD 2017 / arXiv:1702.05837]
- $D^+ o e^+
 u \gamma$: $\mathcal{B}(E_{\gamma}^{(0)} > 10 \; {
 m MeV}$) $< 3.0 imes 10^{-5}$ [BESIII: PRD 2019 / arXiv:1902.03351]
- $\mathcal{B}(B^+ o \ell^+
 u \gamma) < 3.0 imes 10^{-6}~(E_{\gamma}^{(0)} > 1~ ext{GeV})$ [Belle: PRD 2018 / arXiv:1810.12976]
- Belle II expected to measure $\mathcal{B}(B^+ \to \ell^+ \nu \gamma)$ with 3.6% statistical uncertainty [Belle: PRD 2018 / arXiv:1810.12976]

•
$$\mathcal{B}(B^0 o \ell^+\ell^-\gamma)<\mathcal{O}(10^{-7})$$
 for $\ell=e,\mu$ [BABAR: PRD 2008 / arXiv:0706.2870]

• $\mathcal{B}(B^0_s o \mu^+\mu^-\gamma) < 2.0 imes 10^{-9}$ for $m_{\mu\mu} > 4.9$ GeV [LHCb: PRD 2022 / arXiv:2108.09283]

Outline for section 2

Introduction and Motivation

2 Extracting the hadronic tensor with Euclidean correlation functions

3 Methods study

(4) $D_s \rightarrow \ell \nu_\ell \gamma$ preliminary form factor results

Decay amplitude

To calculate decay amplitude:

- use effective Hamiltonian for weak current
- use 1st order perturbation theory for QED piece

Decay amplitude

To calculate decay amplitude:

- use effective Hamiltonian for weak current
- use 1st order perturbation theory for QED piece

Decay amplitude given by

$$\mathcal{A} = rac{\mathcal{G}_{\mathsf{F}} \mathcal{V}_{\mathsf{cs}}}{\sqrt{2}} \Big[e \epsilon_{\mu}^{*} ar{\ell} \gamma_{
u} (1 - \gamma_{5})
u \cdot \mathcal{T}^{\mu
u} - ie \mathcal{Q}_{\ell} f_{\mathcal{D}_{s}} \cdot ar{\ell} \epsilon_{\mu}^{*} \gamma^{\mu} (1 - \gamma_{5})
u \Big]$$

QCD physics left to calculate is Hadronic tensor $T_{\mu\nu}$

Hadronic Tensor and Form Factors

$$J^{em}_\mu = \sum_{m{q}} e_{m{q}} ar{q} \gamma_\mu m{q}, \qquad J^{weak}_
u = ar{q}_1 \gamma_
u (1-\gamma_5) m{q}_2$$

$$T_{\mu
u} = -i\int d^4x \,\, e^{i p_\gamma \cdot x} \langle 0 | {f T} \left(J^{
m em}_\mu(x) J^{
m weak}_
u(0)
ight) | H(ec p_H)
angle$$

Hadronic Tensor and Form Factors

 $J^{em}_{\mu} = \sum_{m{q}} e_{m{q}} ar{q} \gamma_{\mu} m{q}, \qquad J^{weak}_{
u} = ar{q}_1 \gamma_{
u} (1-\gamma_5) m{q}_2$

$$T_{\mu\nu} = -i \int d^4 x \ e^{ip_{\gamma} \cdot x} \langle 0|\mathbf{T} \left(J_{\mu}^{\text{em}}(x) J_{\nu}^{\text{weak}}(0) \right) |H(\vec{p}_{H}) \rangle$$

= $\epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_{V} + i \left[-g_{\mu\nu} (v \cdot p_{\gamma}) + v_{\mu} (p_{\gamma})_{\nu} \right] F_{A} - i \frac{v_{\mu} v_{\nu}}{(v \cdot p_{\gamma})} m_{H} f_{H} + (p_{\gamma})_{\mu} \text{-terms}$

Hadronic Tensor and Form Factors

 $J^{em}_{\mu} = \sum_{m{q}} e_{m{q}} ar{q} \gamma_{\mu} m{q}, \qquad J^{weak}_{
u} = ar{q}_1 \gamma_{
u} (1-\gamma_5) m{q}_2$

$$T_{\mu\nu} = -i \int d^4 x \ e^{ip_{\gamma} \cdot x} \langle 0 | \mathbf{T} \left(J_{\mu}^{\text{em}}(x) J_{\nu}^{\text{weak}}(0) \right) | H(\vec{p}_H) \rangle$$

= $\epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_V + i \left[-g_{\mu\nu} (v \cdot p_{\gamma}) + v_{\mu} (p_{\gamma})_{\nu} \right] F_A - i \frac{v_{\mu} v_{\nu}}{(v \cdot p_{\gamma})} m_H f_H + (p_{\gamma})_{\mu} \text{-terms}$
 $F_{A,SD} = F_A - \left(-Q_{\ell} f_H / E_{\gamma}^{(0)} \right), \qquad E_{\gamma}^{(0)} = p_B \cdot p_{\gamma} / m_B$
Hadronic Tensor and Form Factors

 $J^{em}_{\mu} = \sum_{m{q}} e_{m{q}} ar{q} \gamma_{\mu} m{q}, \qquad J^{weak}_{
u} = ar{q}_1 \gamma_{
u} (1-\gamma_5) m{q}_2$

$$T_{\mu\nu} = -i \int d^{4}x \ e^{ip_{\gamma} \cdot x} \langle 0 | \mathbf{T} \left(J_{\mu}^{\text{em}}(x) J_{\nu}^{\text{weak}}(0) \right) | H(\vec{p}_{H}) \rangle$$

= $\epsilon_{\mu\nu\tau\rho} p_{\gamma}^{\tau} v^{\rho} F_{V} + i \left[-g_{\mu\nu} (v \cdot p_{\gamma}) + v_{\mu} (p_{\gamma})_{\nu} \right] F_{A} - i \frac{v_{\mu} v_{\nu}}{(v \cdot p_{\gamma})} m_{H} f_{H} + (p_{\gamma})_{\mu} \text{-terms}$

$$F_{A,SD} = F_A - (-Q_\ell f_H / E_\gamma^{(0)}), \qquad E_\gamma^{(0)} = p_B \cdot p_\gamma / m_B$$

Goal: Calculate F_V and $F_{A,SD}$ as a function of $E_{\gamma}^{(0)}$

$$C_{3,\mu\nu}(t_{em},t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{p}_{\gamma}\cdot\vec{x}} e^{i\vec{p}_{H}\cdot\vec{y}} \langle J_{\mu}^{em}(t_{em},\vec{x}) J_{\nu}^{weak}(0) \phi_{H}^{\dagger}(t_{H},\vec{y}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

$$C_{3,\mu\nu}(t_{em}, t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{p}_{\gamma}\cdot\vec{x}} e^{i\vec{p}_{H}\cdot\vec{y}} \langle J_{\mu}^{em}(t_{em}, \vec{x}) J_{\nu}^{weak}(0) \phi_{H}^{\dagger}(t_{H}, \vec{y}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

Define time-integrated correlation functions for each time ordering

$$C_{3,\mu\nu}(t_{em}, t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{p}_{\gamma}\cdot\vec{x}} e^{i\vec{p}_{H}\cdot\vec{y}} \langle J_{\mu}^{em}(t_{em}, \vec{x}) J_{\nu}^{weak}(0) \phi_{H}^{\dagger}(t_{H}, \vec{y}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

Define time-integrated correlation functions for each time ordering

$$I_{\mu\nu}^{<}(T, t_{H}) = \int_{-T}^{0} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$

$$C_{3,\mu\nu}(t_{em}, t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{p}_{\gamma}\cdot\vec{x}} e^{i\vec{p}_{H}\cdot\vec{y}} \langle J_{\mu}^{em}(t_{em}, \vec{x}) J_{\nu}^{weak}(0) \phi_{H}^{\dagger}(t_{H}, \vec{y}) \rangle$$
$$\phi_{H}^{\dagger} \sim \bar{Q}\gamma_{5}u$$

Define time-integrated correlation functions for each time ordering

$$I_{\mu\nu}^{<}(T, t_{H}) = \int_{-T}^{0} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$
$$I_{\mu\nu}^{>}(T, t_{H}) = \int_{0}^{T} dt_{em} e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_{H})$$

Show relation between $I_{\mu\nu}(T, t_H)$ and $T_{\mu\nu}$

ightarrow compare spectral decompositions of both time orderings of $I_{\mu
u}$ and $T_{\mu
u}$

$$T^{>}_{\mu\nu} = \sum_{n} \frac{\langle 0|J^{em}_{\mu}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J^{weak}_{\nu}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$T_{\mu\nu}^{>} = \sum_{n} \frac{\langle 0|J_{\mu}^{em}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J_{\nu}^{weak}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$I^{>}_{\mu
u}(t_{H},T)=\int_{0}^{T}dt_{em}\;e^{E_{\gamma}t_{em}}C_{\mu
u}(t_{em},t_{H})$$

$$T_{\mu\nu}^{>} = \sum_{n} \frac{\langle 0|J_{\mu}^{em}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J_{\nu}^{weak}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$\begin{split} I^{>}_{\mu\nu}(t_{H},T) &= \int_{0}^{T} dt_{em} \ e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) \\ &= \sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{p}_{H}) | \phi^{\dagger}_{H}(0) | 0 \rangle}{2E_{m,\vec{p}_{H}}} \\ &\times \sum_{n} \frac{\langle 0 | J^{em}_{\mu}(0) | n(\vec{p}_{\gamma}) \rangle \langle n(\vec{p}_{\gamma}) | J^{weak}_{\nu}(0) | m(\vec{p}_{H}) \rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})} \left[1 - e^{(E_{\gamma}-E_{n,\vec{p}_{\gamma}})T} \right] \end{split}$$

$$T^{>}_{\mu\nu} = \sum_{n} \frac{\langle 0|J^{em}_{\mu}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J^{weak}_{\nu}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$\begin{split} I^{>}_{\mu\nu}(t_{H},T) &= \int_{0}^{T} dt_{em} \ e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) \quad \begin{array}{l} t_{H} \to -\infty \ \text{to achieve} \\ \text{ground state saturation} \\ &= \sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{p}_{H}) | \phi^{\dagger}_{H}(0) | 0 \rangle}{2E_{m,\vec{p}_{H}}} \\ &\times \sum_{n} \frac{\langle 0 | J^{em}_{\mu}(0) | n(\vec{p}_{\gamma}) \rangle \langle n(\vec{p}_{\gamma}) | J^{weak}_{\nu}(0) | m(\vec{p}_{H}) \rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma} - E_{n,\vec{p}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{p}_{\gamma}})T} \right] \end{split}$$

Time ordering: $t_{em} > 0$

$$T^{>}_{\mu\nu} = \sum_{n} \frac{\langle 0|J^{em}_{\mu}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J^{weak}_{\nu}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$\begin{split} I^{>}_{\mu\nu}(t_{H},T) &= \int_{0}^{T} dt_{em} \; e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) \quad \begin{array}{l} t_{H} \to -\infty \; \text{to achieve} \\ \text{ground state saturation} \\ &= \sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{p}_{H}) | \phi^{\dagger}_{H}(0) | 0 \rangle}{2E_{m,\vec{p}_{H}}} \\ &\times \sum_{n} \frac{\langle 0 | J^{em}_{\mu}(0) | n(\vec{p}_{\gamma}) \rangle \langle n(\vec{p}_{\gamma}) | J^{weak}_{\nu}(0) | m(\vec{p}_{H}) \rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma} - E_{n,\vec{p}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{p}_{\gamma}})T} \right] \end{split}$$

• Require $E_{\gamma} - E_{n,\vec{p}_{\gamma}} < 0$

• Because the states $|n(ec{p_{\gamma}})
angle$ have mass, $\sqrt{m_n^2+ec{p_{\gamma}}^2}>|ec{p_{\gamma}}|$ is automatically satisfied

Time ordering: $t_{em} > 0$

$$T^{>}_{\mu\nu} = \sum_{n} \frac{\langle 0|J^{em}_{\mu}(0)|n(\vec{p}_{\gamma})\rangle\langle n(\vec{p}_{\gamma})|J^{weak}_{\nu}(0)|H(\vec{p}_{H})\rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma}-E_{n,\vec{p}_{\gamma}})}$$

$$\begin{split} I_{\mu\nu}^{>}(t_{H},T) &= \int_{0}^{T} dt_{em} \; e^{E_{\gamma}t_{em}} C_{\mu\nu}(t_{em},t_{H}) & \begin{array}{c} t_{H} \to -\infty \; \text{to achieve} \\ \text{ground state saturation} \\ \end{array} \\ &= \sum_{m} e^{E_{m}t_{H}} \frac{\langle m(\vec{p}_{H}) | \phi_{H}^{\dagger}(0) | 0 \rangle}{2E_{m,\vec{p}_{H}}} & T \to \infty \; \text{to remove unwanted exponentials} \\ &\quad \text{that come with intermediate states} \\ &\quad \times \sum_{n} \frac{\langle 0 | J_{\mu}^{em}(0) | n(\vec{p}_{\gamma}) \rangle \langle n(\vec{p}_{\gamma}) | J_{\nu}^{weak}(0) | m(\vec{p}_{H}) \rangle}{2E_{n,\vec{p}_{\gamma}}(E_{\gamma} - E_{n,\vec{p}_{\gamma}})} \left[1 - e^{(E_{\gamma} - E_{n,\vec{p}_{\gamma}})T} \right] \end{split}$$

• Require
$$E_{\gamma} - E_{n,\vec{p}_{\gamma}} < 0$$

• Because the states $|n(ec{p_{\gamma}})
angle$ have mass, $\sqrt{m_n^2+ec{p_{\gamma}}^2}>|ec{p_{\gamma}}|$ is automatically satisfied

Final relation

For $\mathbf{p}_{\gamma}
eq \mathbf{0}$,

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Outline for section 3

Introduction and Motivation

2 Extracting the hadronic tensor with Euclidean correlation functions

3 Methods study

(4) $D_s
ightarrow \ell
u_\ell \gamma$ preliminary form factor results

Calculating $I_{\mu\nu}(T, t_H)$ $T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_\gamma t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

1: 3d (timeslice) sequential propagator through $\phi_H^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_H)$ on lattice, fixed t_H get all t_{em} for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- 1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free
- 2: 4d sequential propagator through $J^{em}_{\mu} \rightarrow$ calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- 1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free
- 2: 4d sequential propagator through $J^{em}_{\mu} \rightarrow$ calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- 1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_{H})$ on lattice, fixed t_{H} get all t_{em} for free
- 2: 4d sequential propagator through $J^{em}_{\mu} \rightarrow$ calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

- 1: 3d (timeslice) sequential propagator through $\phi_H^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_H)$ on lattice, fixed t_H get all t_{em} for free
- 2: 4d sequential propagator through $J^{em}_{\mu} \rightarrow$ calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

Limitation of 4d method: cannot resolve time orderings

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

Two methods to calculate $I_{\mu\nu}(T, t_H)$:

- 1: 3d (timeslice) sequential propagator through $\phi_H^{\dagger} \rightarrow$ calculate $C_{3,\mu\nu}(t_{em}, t_H)$ on lattice, fixed t_H get all t_{em} for free
- 2: 4d sequential propagator through $J^{em}_{\mu} \rightarrow$ calculate $I_{\mu\nu}(T, t_H)$ on lattice, fixed T get all t_H for free

Limitation of 4d method: cannot resolve time orderings \implies 4d^{>,<} method: perform two sequential solves to resolve $t_{em} < 0$ and $t_{em} > 0$

Past lattice studies

$$T_{\mu\nu} = \lim_{T \to \infty} \lim_{t_H \to -\infty} \frac{-2E_H e^{-E_H t_H}}{\langle H(\vec{p}_H) | \phi_H^{\dagger} | 0 \rangle} \underbrace{\int_{-T}^{T} dt_{em} \ e^{E_{\gamma} t_{em}} C_{3,\mu\nu}(t_{em}, t_H)}_{I_{\mu\nu}(T, t_H)}$$

- [1] we presented results at Lattice 2019 using 3d method
 - fitting to a constant looking for plateaus in T and t_H
- [2,3] use 4d method to perform realistic physical calculation
 set T = N_T/2 and fit to constant in t_H where data has plateaued
- [4] perform a methods study comparing 3d and 4d methods
 - data does not always plateau in T and t_H
 - ightarrow develop fit methods to extrapolate to $\mathcal{T}
 ightarrow\infty$ and $t_H
 ightarrow-\infty$
- [1] [CFK, Lehner, Meinel, Soni, arXiv:1907.00279]
- [2] [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2006.05358]
- [3] [Frezzotti, Gagliardi, Lubicz, Martinelli, Mazzetti, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2306.05904]
- [4] [D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:2302.01298]

Comparison of 3d and 4d methods

Show fit methods to take $\lim_{\mathcal{T}\to\infty}$ and $\lim_{t_{\mathcal{H}}\to-\infty}$

- fitting only 4d^{>,<} method data
- fitting only 3d method data
- performing global fits to both 3d and $4d^{>,<}$ method data

Goal: find methods with best control over $\lim_{T\to\infty}$ and $\lim_{t_H\to-\infty}$ limits for cheapest cost

Simulation parameters for 3d/4d method comparison

• $N_f = 2 + 1$ DWF, RBC/UKQCD gauge ensemble

ensemble	$(L/a)^3 \times (T/a)$	L_5/a	$\approx a^{-1}$ (GeV)	am_l	am_s	$\approx M_{\pi}(\text{MeV})$	N_{conf}
24I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25

- Use local currents with mostly non-perturbative renormalization
- $\bullet\,$ charm valence quarks $\to\,$ Möbius domain-wall with "stout" smearing
- $\bullet~u/d/s$ valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging with 1 exact and 16 sloppy solves per configuration
- $\bullet~\mathbb{Z}_2$ random wall sources

Parameters for $D_s \rightarrow \gamma \ell \nu$ runs

Meson and photon momenta:

Method	Source	Meson Momentum	Photon Momentum
3d	\mathbb{Z}_2 -wall	$\vec{p}_{D_s} = (0, 0, 0)$	$ \vec{p}_{\gamma} ^2 \in (2\pi/L)^2\{1, 2, 3, 4\}$
4d	\mathbb{Z}_2 -wall	$\vec{p}_{D_s,z} \in 2\pi/L\{-1,0,1,2\}$	$ec{p}_{\gamma,z}=2\pi/L$

 $4d^{>,<}$ method:

• 3 values of integration range $T/a \in \{6, 9, 12\}$

3d method:

• 3 values of source-sink separation $t_H/a \in \{-6, -9, -12\}$

Fit form factors $F(t_H, T)$ directly instead of time-integrated correlation function $I_{\mu\nu}(t_H, T)$

Include terms to fit

- (1) unwanted exponential from first intermediate state
- (2) first excited state

Include terms to fit

(1) unwanted exponential from first intermediate state(2) first excited state

Time ordering $t_{em} > 0$:

$$F^{>}(t_{H},T) = F^{>} + B_{F}^{>} e^{(E_{\gamma}-E^{>})T} + C_{F}^{>} e^{\Delta E t_{H}}$$

Include terms to fit

(1) unwanted exponential from first intermediate state(2) first excited state

Time ordering $t_{em} > 0$:

$$F^{>}(t_{H},T) = F^{>} + B_{F}^{>} e^{(E_{\gamma}-E^{>})T} + C_{F}^{>} e^{\Delta E t_{H}}$$

Include terms to fit

(1) unwanted exponential from first intermediate state

(2) first excited state

Time ordering $t_{em} > 0$:

$$F^{>}(t_{H},T) = F^{>} + B_{F}^{>} e^{(E_{\gamma}-E^{>})T} + C_{F}^{>} e^{\Delta E t_{H}}$$

4d^{>,<} method: Fits to F_V for $t_{em} > 0$ time ordering

$$F^{>}(t_{H},T) = F^{>} + B_{F}^{>} e^{(E_{\gamma}-E^{>})T} + C_{F}^{>} e^{\Delta E t_{H}}$$

Include terms to fit (1) unwanted exponential from first intermediate state (2) first excited state

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{em} < 0$:

 $F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$ $\blacksquare \text{ fit parameters}$

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H}, T) = F^{<} + B_{F}^{<}(1 + B_{F, exc}^{<} e^{\Delta E(T + t_{H})}) e^{-(E_{\gamma} - E_{H} + E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H},T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma}-E_{H}+E^{<})T} + C_{F}^{<} e^{\Delta E t_{H}}$$

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{em} < 0$:

$$F^{<}(t_{H},T) = F^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma}-E_{H}+E^{<})T} + C_{F}^{<} e^{\Delta Et_{H}}$$

fit parameters

To help stabilize the fits

- \rightarrow Determine ΔE from the pseudoscalar two-point correlation function
- \rightarrow use result as Gaussian prior in form factor fits
3d method: Fits to F_V for $t_{em} < 0$ time ordering

$$F_{V}^{<}(t_{D_{s}},T) = F_{V}^{<} + B_{F}^{<}(1 + B_{F,\text{exc}}^{<} e^{\Delta E(T+t_{H})}) e^{-(E_{\gamma}-E_{H}+E^{<})T} + C_{F}^{<} e^{\Delta Et_{H}}$$

$$egin{aligned} x_\gamma &= 2E_\gamma^{(0)}/m_{D_s} \ 0 &\leq x_\gamma &\leq 1 - rac{m_\ell^2}{m_{D_s}^2} \end{aligned}$$

$$egin{aligned} x_\gamma &= 2E_\gamma^{(0)}/m_{D_s} \ 0 &\leq x_\gamma &\leq 1 - rac{m_\ell^2}{m_{D_s}^2} \end{aligned}$$

Summary:

 3d and 4d^{>,<} methods offer good control over systematics

$$egin{aligned} x_\gamma &= 2E_\gamma^{(0)}/m_{D_s} \ 0 &\leq x_\gamma &\leq 1 - rac{m_\ell^2}{m_{D_s}^2} \end{aligned}$$

Summary:

- 3d and 4d^{>,<} methods offer good control over systematics
- Combined fits offer small improvement relative to individual

$$x_{\gamma} = 2E_{\gamma}^{\gamma\gamma}/m_{D_s}$$

 $0 \le x_{\gamma} \le 1 - rac{m_{\ell}^2}{m_{D_s}^2}$

-(0)

Summary:

- 3d and $4d^{>,<}$ methods offer good control over systematics
- Combined fits offer small improvement relative to individual

• $4d^{>,<}$ method generally more expensive than 3d method if cover full $E_{\gamma}^{(0)}$ range

• 4d^{>,<} method generally more expensive than 3d method if cover full $E_{\gamma}^{(0)}$ range

3d method offers good control over systematics for cheapest cost

Improved estimators using 3d method

Simulation parameters for final 3d method dataset

٩	$N_f = 2 + 1$	DWF,	3 RBC	/UKQCD	gauge	ensembles
---	---------------	------	-------	--------	-------	-----------

ensemble	$(L/a)^3 \times (T/a)$	L_5/a	$\approx a^{-1}(\text{GeV})$	am_l	am_s	$\approx M_{\pi}(\text{MeV})$	Nconf
24I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25
321	$32^3 \times 64$	16	2.383	0.004	0.03	304	26
481	$48^{3} \times 96$	24	1.730	0.00078	0.0362	139	7

- Use local currents with mostly non-perturbative renormalization
- \bullet charm valence quarks \rightarrow Möbius domain-wall with "stout" smearing
- $\bullet~u/d/s$ valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging 4 exact and 64 sloppy solves per config

Simulation parameters for final 3d method dataset

٩	$N_f = 2 + 1$	DWF,	3 RBC	/UKQCD	gauge	ensembles
---	---------------	------	-------	--------	-------	-----------

ensemble	$(L/a)^3 \times (T/a)$	L_5/a	$\approx a^{-1}(\text{GeV})$	am_l	am_s	$\approx M_{\pi}(\text{MeV})$	Nconf
24I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25
321	$32^3 \times 64$	16	2.383	0.004	0.03	304	26
48I	$48^{3} \times 96$	24	1.730	0.00078	0.0362	139	7

- Use local currents with mostly non-perturbative renormalization
- $\bullet\,$ charm valence quarks $\to\,$ Möbius domain-wall with "stout" smearing
- $\bullet~u/d/s$ valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging 4 exact and 64 sloppy solves per config

Final improved estimators using 3d method:

- $\bullet~\mathbb{Z}_2$ random wall sources and point sources
- Two datasets: $J_{
 u}^{\text{weak}}(0)$ or $J_{\mu}^{\text{em}}(0)$
- For point-sources use translational invariance to fix em/weak operator at origin
 → use "infinite-volume approximation" to generate data at arbitrary photon momenta
 (only exponentially small FVEs introduced)

• Fix em current at origin: $J_{\mu}^{\rm em}(0)$

$$C_{3,\mu\nu}^{\mathsf{EM}}(t_W,t_H) = e^{E_H t_W} \int d^3x \int d^3y \ e^{-i\vec{p}_H\cdot\vec{x}} e^{i\vec{p}_\gamma\cdot\vec{x}} e^{i\vec{p}_H\cdot\vec{y}} \langle J_{\mu}^{\mathsf{em}}(0)J_{\nu}^{\mathsf{weak}}(t_W,\vec{x})\phi_H^{\dagger}(t_H,\vec{y})\rangle$$

• Fix em current at origin: $J_{\mu}^{\rm em}(0)$

$$C_{3,\mu\nu}^{\mathsf{EM}}(t_W,t_H) = e^{\mathcal{E}_H t_W} \int d^3x \int d^3y \ e^{-i\vec{p}_H \cdot \vec{x}} e^{i\vec{p}_\gamma \cdot \vec{x}} e^{i\vec{p}_H \cdot \vec{y}} \langle J_{\mu}^{\mathsf{em}}(0) J_{\nu}^{\mathsf{weak}}(t_W,\vec{x}) \phi_{H}^{\dagger}(t_H,\vec{y}) \rangle$$

• $e^{E_H t_W}$ and $e^{-i \vec{p}_H \cdot \vec{x}}$ shift weak current relative to other operators

• Fix em current at origin: $J_{\mu}^{\rm em}(0)$

$$C_{3,\mu\nu}^{\mathsf{EM}}(t_W,t_H) = e^{E_H t_W} \int d^3x \int d^3y \ e^{-i\vec{p}_H \cdot \vec{x}} e^{i\vec{p}_\gamma \cdot \vec{x}} e^{i\vec{p}_H \cdot \vec{y}} \langle J_{\mu}^{\mathsf{em}}(0) J_{\nu}^{\mathsf{weak}}(t_W,\vec{x}) \phi_H^{\dagger}(t_H,\vec{y}) \rangle$$

- $e^{E_H t_W}$ and $e^{-i\vec{p}_H\cdot\vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free

• Fix em current at origin: $J_{\mu}^{\rm em}(0)$

$$C_{3,\mu\nu}^{\mathsf{EM}}(t_W,t_H) = e^{\mathcal{E}_H t_W} \int d^3x \int d^3y \ e^{-i\vec{p}_H \cdot \vec{x}} e^{i\vec{p}_\gamma \cdot \vec{x}} e^{i\vec{p}_H \cdot \vec{y}} \langle J_{\mu}^{\mathsf{em}}(0) J_{\nu}^{\mathsf{weak}}(t_W,\vec{x}) \phi_H^{\dagger}(t_H,\vec{y}) \rangle$$

- $e^{E_H t_W}$ and $e^{-i\vec{p}_H\cdot\vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free
- define analogous time-integrated correlation function $I_{\mu\nu}^{<,\text{EM}}(T,t_H)$ and $I_{\mu\nu}^{>,\text{EM}}(T,t_H)$

• Fix em current at origin: $J_{\mu}^{\rm em}(0)$

$$C_{3,\mu\nu}^{\mathsf{EM}}(t_W,t_H) = e^{\mathcal{E}_H t_W} \int d^3x \int d^3y \ e^{-i\vec{p}_H \cdot \vec{x}} e^{i\vec{p}_\gamma \cdot \vec{x}} e^{i\vec{p}_H \cdot \vec{y}} \langle J_{\mu}^{\mathsf{em}}(0) J_{\nu}^{\mathsf{weak}}(t_W,\vec{x}) \phi_H^{\dagger}(t_H,\vec{y}) \rangle$$

- $e^{E_H t_W}$ and $e^{-i\vec{p}_H\cdot\vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free
- define analogous time-integrated correlation function $I_{\mu\nu}^{<,\text{EM}}(T,t_H)$ and $I_{\mu\nu}^{>,\text{EM}}(T,t_H)$

Spectral decompositions show us

 $I_{\mu\nu}^{<,\mathsf{EM}}(\mathcal{T}, t_{\mathcal{H}}) = I_{\mu\nu}^{>}(\mathcal{T}, t_{\mathcal{H}}) + \text{excited state effects}$ $I_{\mu\nu}^{>,\mathsf{EM}}(\mathcal{T}, t_{\mathcal{H}}) = I_{\mu\nu}^{<}(\mathcal{T}, t_{\mathcal{H}}) + \text{excited state effects}$

Perform combined fits to take advantage of this relation

• Can integrate past $T = -t_H$ using alternate correlation function

Alternate correlation function: vector form factor

Non-perturbative subtraction of IR divergent lattice artifacts

Blue data: improved subtraction of point-like contribution

Taking ratios of correlation functions

$$C_{3,\mu\nu}^{\text{improved}}(\vec{p}_{\gamma},t) = C_{3,\mu\nu}^{\text{point}}(\vec{p}_{\gamma},t) \frac{C_{3,\mu\nu}^{\mathbb{Z}_2}(\vec{p}^*,t)}{C_{3,\mu\nu}^{\text{point}}(\vec{p}^*,t)}, \qquad \vec{p}^* = \frac{2\pi}{L}n$$

Averaging over $\pm \vec{p}_{\gamma}$

Outline for section 4

- Introduction and Motivation
- **2** Extracting the hadronic tensor with Euclidean correlation functions
- 3 Methods study
- **4** $D_s \rightarrow \ell \nu_\ell \gamma$ preliminary form factor results

$D_s \rightarrow \ell \nu_\ell \gamma$ preliminary results

-0.20

-0.25

0.0

0.2

0.4

We are testing various fit functions to provide a parameterization of the form-factor lattice data

Ŧ 321

481

preliminary

 X_{γ}

0.6

$D_s \rightarrow \ell \nu_\ell \gamma$ preliminary results

[2] [Pullin, Zwicky, JHEP 2021/arXiv:2106.13617]

37 / 41

$D_s \rightarrow \ell \nu_\ell \gamma$ comparison

sign: different convention in FF decomp

$D_s \rightarrow \ell \nu_\ell \gamma$ comparison

sign: different convention in FF decomp

$D_s \rightarrow \ell \nu_\ell \gamma$ comparison

Future work

- Investigating different fit models to parameterize lattice form factors
- Improving statistics with new computing allocation from ACCESS
- Go to the B using new RBC-UKQCD $a^{-1} \approx 3.5$ GeV and 4.5 GeV lattices
- Have data for π , K, D, analyze this and compare our results to physical calculation in [Desiderio et. al, PRD 2021, arXiv:2006.05358] and experiment as was done in [Frezzotti et. al, PRD 2021, arXiv:2012.02120]

• Radiative leptonic decays are physically interesting at large and small photon momentum

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_H \rightarrow -\infty$

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_H \rightarrow -\infty$
- Compared 3d sequential propagator and 4d sequential propagtors

 \rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_H \rightarrow -\infty$
- Compared 3d sequential propagator and 4d sequential propagtors

 \rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost

• Implemented number of improvements to 3d method

Summary

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_H \rightarrow -\infty$
- Compared 3d sequential propagator and 4d sequential propagtors
 - \rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost
- Implemented number of improvements to 3d method
- Presented preliminary results for $D_s \rightarrow \gamma \ell \nu$ on three RBC/UKQCD ensembles using DWF for all flavors

Main Take-Away Point 1: Radiative leptonic decays are interesting in the regions of small and large photon energies

Main Take-Away Point 2: We have developed methods to achieve high precision for small computational cost

for more details: D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:[2302.01298]

Main Take-Away Point 3: Working on physical calculation of $D_s \rightarrow \gamma \ell \nu_\ell$, out soon

Backup slides

Time order visualization

Minkowski spectral decomposition of $T_{\mu\nu}$

Time ordering $t_{em} < 0$:

$$\widehat{1} = |0\rangle\langle 0| + \sum_{n} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{2E_{n}(\vec{p})} |n(\vec{p})\rangle\langle n(\vec{p})|$$

$$T^{<}_{\mu\nu} = -i \int_{-\infty(1-i\epsilon)}^{0} dt_{em} \int d^{3}x \ e^{ip_{\gamma} \cdot x} \langle 0|J^{weak}_{\nu}(0)\widehat{1}J^{em}_{\mu}(x)|B^{-}(\vec{p}_{B})\rangle$$
$$= -\sum_{n} \frac{1}{2E_{n,\vec{p}_{B}-\vec{p}_{\gamma}}} \frac{1}{E_{\gamma} + E_{n,\vec{p}_{B}-\vec{p}_{\gamma}} - E_{B,\vec{p}_{B}} - i\epsilon}$$
$$\times \langle 0|J^{weak}_{\nu}(0)|n(\vec{p}_{B}-\vec{p}_{\gamma})\rangle \langle n(\vec{p}_{B}-\vec{p}_{\gamma})|J^{em}_{\mu}(0)|B(\vec{p}_{B})\rangle$$

(In infinite volume, the sum over n includes an integral over the continuous spectrum of multi-particle states.)

Euclidean spectral decomposition of $I_{\mu\nu}$

Time ordering $t_{em} < 0$: (for large negative t_B)

$$\begin{split} & \stackrel{<}{=} \sum_{\mu\nu}^{0} (t_{B}, T) = \int_{-T}^{0} dt_{em} \; e^{E_{\gamma} t} C_{3, \mu\nu}(t_{em}, t_{B}) \\ & = \langle B(\vec{p}_{B}) | \phi_{B}^{\dagger}(0) | 0 \rangle \frac{1}{2E_{B, \vec{p}_{B}}} e^{E_{B} t_{B}} \\ & \times \sum_{n} \frac{1}{2E_{n, \vec{p}_{B} - \vec{p}_{\gamma}}} \frac{\langle 0 | J_{\nu}^{weak}(0) | n(\vec{p}_{B} - \vec{p}_{\gamma}) \rangle \langle n(\vec{p}_{B} - \vec{p}_{\gamma}) | J_{\mu}^{em}(0) | B(\vec{p}_{B}) \rangle }{E_{\gamma} + E_{n, \vec{p}_{B} - \vec{p}_{\gamma}} - E_{B, \vec{p}_{B}}} \\ & \times \left[1 - e^{-(E_{\gamma} + E_{n, \vec{p}_{B} - \vec{p}_{\gamma}} - E_{B, \vec{p}_{B}})T} \right] \end{split}$$

Require $E_{\gamma} + E_{n,\vec{p}_B - \vec{p}_{\gamma}} - E_{B,\vec{p}_B} > 0$ to get rid of unwanted exponential States $|n(\vec{p}_B - \vec{p}_{\gamma})\rangle$ has same flavor quantum numbers as B meson $\rightarrow E_{n,\mathbf{p}_B - \mathbf{p}_{\gamma}} \ge E_{B,\mathbf{p}_B - \mathbf{p}_{\gamma}} = \sqrt{m_B^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2}$ For $\mathbf{p}_{\gamma} \ne 0$, $|\mathbf{p}_{\gamma}| + \sqrt{m_n^2 + (\mathbf{p}_B - \mathbf{p}_{\gamma})^2} > \sqrt{m_B^2 + \mathbf{p}_B}$ is automatically satisfied

Comparison to experiment and lattice: [PRD 2021/arXiv:2012.02120]

Depends on $F^{\pm}(x_{\gamma}) = F_V(x_{\gamma}) \pm F_{A,SD}(x_{\gamma})$, at $\mathcal{O}(\alpha_{em})$, three pieces

- Point-like (pt): universal, does not probe internal structure of meson
- Structure-dependent: $SD \sim SD^+((F^+)^2) + SD^-((F^-)^2)$
- Interference between (pt) and (SD): INT $\sim \mathsf{INT}^-(\textit{F}^+) + \mathsf{INT}^-(\textit{F}^-)$

KLOE experiment

- $K \to e \nu_e \gamma$: perform cuts so senstive to mainly SD⁺ \implies (F⁺)²) consistent
- $K
 ightarrow \mu
 u_{\mu} \gamma$: perform cuts so senstive to

E787 experiment:

- $K \rightarrow \mu \nu_{\mu} \gamma$: perform cuts so senstive to mainly SD⁺ \implies (F^+)²), slight dependence on SD⁻ + INT⁻ at small x_{γ}
- Tension between prediction for $F(x_{\gamma})^+$ between KLOE and E787

Rough summary

Let $F^{\pm}(x_{\gamma}) = F_V(x_{\gamma}) \pm F_{A,SD}(x_{\gamma})$, then

		Experiment	Process	Sensitive to	Theory vs Exp.
Piece	QCD FF	KLOE	$K \rightarrow e \nu_e \gamma$	SD ⁺	Agree
PT SD ⁺	none $(F^+)^2$	E787	$K o \mu u_{\mu} \gamma$	SD^+ , $SD^- + INT^-$	Tension
SD^-	$(F^{-})^{2}$	ISTRA+	$K o \mu u_{\mu} \gamma$	INT ⁻	Tension
INT ⁺	F ⁺ F ⁻	OKA	$K o \mu u_{\mu} \gamma$	INT ⁻	Tension
	'	PIBETA	$\pi ightarrow e u_e \gamma$	SD^+	Tension

Fit form: 4d method

Use fit ranges where data has plateaued in t_H , i.e. $t_H
ightarrow -\infty$

Include terms to fit (1) unwanted exponential from first intermediate state

Limitation of 4d method \rightarrow cannot resolve the two time orderings \rightarrow Fit sum of both time orderings $F_V(T, t_H) = F_V^{<}(T, t_H) + F_V^{>}(T, t_H)$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^>$ exclude unphysical values

Comparison of 4d and 4d^{>,<}

$$egin{aligned} x_\gamma &= 2 E_\gamma^{(0)}/m_{D_s} \ 0 &\leq x_\gamma &\leq 1 - rac{m_\ell^2}{m_{D_s}^2} \end{aligned}$$

Summary:

- Cost 4d^{>,<} method roughly twice 4d method
- $4d^{>,<}$ resolves time orders, allows better control over $\mathcal{T} \to \infty$ limit
- 4d^{>,<} method smaller uncertainty than 4d method

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

Strategy:

- Work in rest frame of D_s meson
- Calculate correlation function for arbitrary values of photon momentum
- Propagator solves per config

 $ightarrow 2(1 + N_{t_H})$

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

Strategy:

- Work in rest frame of D_s meson
- Calculate correlation function for arbitrary values of photon momentum
- Propagator solves per config
 - $ightarrow 2(1 + N_{t_H})$

Photon momenta for 24I ensemble:

$$p_{\gamma,z} = 2\pi/L \times \{0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.4\}$$

$$C_{3,\mu\nu}(t_{em},t_{H}) = \int d^{3}x \int d^{3}y \ e^{-i\vec{p}_{\gamma}\cdot\vec{x}} \langle J^{\text{em}}_{\mu}(t_{em},\vec{x}) J^{\text{weak}}_{\nu}(0) \phi^{\dagger}_{H}(t_{H},\vec{y}) \rangle$$

We assume there exist $c, d, \Lambda, \Lambda' \in \mathbb{R}^+$ and $L_0 \in \mathbb{N}$ for which

$$\tilde{C}^L(q) \equiv \sum_{x=-L/2}^{L/2-1} C^L(x) e^{iqx}$$

for all x with $-L/2 \le x \le L/2$ and $L \ge L_0$ and

$$|C^{\infty}(x)| \le de^{-\Lambda'|x|}$$

for all x with |x| > L/2. We now define

$$|C^{\infty}(x) - C^{L}(x)| \le ce^{-\Lambda L}$$
 and $\tilde{C}^{\infty}(q) \equiv \sum_{x=-\infty}^{\infty} C^{\infty}(x)e^{iqx}$.

Under the above assumptions, it then follows that there is a $\tilde{c} \in \mathbb{R}^+$ for which

$$|\tilde{C}^{\infty}(q) - \tilde{C}^{L}(q)| \le \tilde{c}e^{-\Lambda_0 L}$$

for all $q \in [-\pi,\pi]$ and all $L \ge L_0$, with $\Lambda_0 \equiv \min(\Lambda,\Lambda'/2)$.

Fits to 3d data for F_V with improved methods

Fits to 3d data for $F_{A,SD}$ with improved methods

Simulation parameters

Physical calculation for π, K, D, D_s [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2006.05358]

- 3 ETMC gauge ensembles with $N_f = 2 + 1 + 1$
- twisted mass fermions in sea?
- 3 lattice spacings $a \in \{0.089, 0.082, 0.062\}$ fm
- Lightest
- ullet twisted boundary conditions to assign arbitrary $p_\gamma, p_{\mathsf{Meson}}$

Physical calculation for $D_s
ightarrow \gamma \ell
u_\ell$ for full kinematic range of E_γ [Frezzotti, Gagliardi, Lubicz, Martinelli, Mazzetti,

Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2306.05904]

- 4 ETMC gauge ensembles with $N_f = 2 + 1 + 1$
- twisted mass fermions
- 4 lattice spacings $a \in [0.058, 0.09]$ fm
- physical pion mass
- ullet twisted boundary conditions to assign arbitrary p_γ, p_{D_s}
- Osterwalder-Seiler fermions