Methods for high-precision determinations of radiative-leptonic decay form factors using lattice QCD

Speaker: Christopher Kane ${ }^{1}$

In collaboration with: Davide Giusti ${ }^{2}$, Christoph Lehner ${ }^{2}$, Stefan Meinel ${ }^{1}$, Amarjit Soni ${ }^{3}$

Jefferson Lab Theory Seminar

Date: September 11, 2023

${ }^{1}$ University of Arizona
${ }^{2}$ University of Regensburg
${ }^{3}$ Brookhaven National Lab

Main Take-Away Points

Main Take-Away Point 1: Radiative leptonic decays are interesting in the regions of small and large photon energies

Main Take-Away Point 2: We have developed methods to achieve high precision for small computational cost
for more details: D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:[2302.01298]

Main Take-Away Point 3: Working on physical calculation of $D_{s} \rightarrow \gamma \ell \nu_{\ell}$, out soon

Table of Contents

(1) Introduction and Motivation
(2) Extracting the hadronic tensor with Euclidean correlation functions
(3) Methods study
(4) $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary form factor results

Outline for section 1

(1) Introduction and Motivation
(2) Extracting the hadronic tensor with Euclidean correlation functions
(3) Methods study
(4) $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary form factor results

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

- $\mathrm{H}^{+} \rightarrow \gamma \ell^{+} \nu_{\ell}, \quad \mathrm{H}^{-} \rightarrow \gamma \ell^{-} \bar{\nu}_{\ell}$

Schematic diagram for $D_{s}^{+} \rightarrow \gamma e^{+} \nu_{e}$

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

- $\mathrm{H}^{+} \rightarrow \gamma \ell^{+} \nu_{\ell}, \quad \mathrm{H}^{-} \rightarrow \gamma \ell^{-} \bar{\nu}_{\ell}$

Schematic diagram for $D_{s}^{+} \rightarrow \gamma e^{+} \nu_{e}$

Flavor changing neutral current (FCNC)

- $H^{0} \rightarrow \gamma \ell^{+} \ell^{-}$

Schematic diagram for $B_{s}^{0} \rightarrow \gamma \ell^{+} \ell^{-}$

Radiative leptonic decays of pseudoscalar mesons

Flavor changing charged current (FCCC)

- $\mathrm{H}^{+} \rightarrow \gamma \ell^{+} \nu_{\ell}, \quad \mathrm{H}^{-} \rightarrow \gamma \ell^{-} \bar{\nu}_{\ell}$

Schematic diagram for $D_{s}^{+} \rightarrow \gamma e^{+} \nu_{e}$

Flavor changing neutral current (FCNC)

- $H^{0} \rightarrow \gamma \ell^{+} \ell^{-}$

Schematic diagram for $B_{s}^{0} \rightarrow \gamma \ell^{+} \ell^{-}$

Knowledge of structure dependent QCD form factors are of interest for both small and large photon energies

Regions of small photon energies

Precision determinations of CKM matrix elements

Determinations of CKM matrix elements $V_{q_{1} q_{2}}$ require meson decay constants f_{H}

$$
\left\ulcorner(H \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{H}^{2}}\right)^{2} m_{H} f_{H}^{2}, \quad\langle 0| A_{\mu}|H\rangle=i p_{\mu} f_{H}\right.
$$

Precision determinations of CKM matrix elements

Determinations of CKM matrix elements $V_{q_{1} q_{2}}$ require meson decay constants f_{H}

$$
\Gamma(H \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{H}^{2}}\right)^{2} m_{H} f_{H}^{2}, \quad\langle 0| A_{\mu}|H\rangle=i p_{\mu} f_{H}
$$

Measure $\Gamma(H \rightarrow \ell \nu)$ experimentally
Calculate f_{H} with lattice QCD

$$
\text { determine }\left|V_{q_{1} q_{2}}\right|^{2}
$$

Precision determinations of CKM matrix elements

Determinations of CKM matrix elements $V_{q_{1} q_{2}}$ require meson decay constants f_{H}

$$
\left\ulcorner(H \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{H}^{2}}\right)^{2} m_{H} f_{H}^{2}, \quad\langle 0| A_{\mu}|H\rangle=i p_{\mu} f_{H}\right.
$$

Measure $\Gamma(H \rightarrow \ell \nu)$ experimentally Calculate f_{H} with lattice QCD

- Sub-percent precision for f_{H} require $\mathcal{O}\left(\alpha_{e m}\right)$ electromagnetic corrections $H \rightarrow \ell \nu(\gamma)$
- Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$
\rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

Precision determinations of CKM matrix elements

Determinations of CKM matrix elements $V_{q_{1} q_{2}}$ require meson decay constants f_{H}

$$
\left\ulcorner(H \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{H}^{2}}\right)^{2} m_{H} f_{H}^{2}, \quad\langle 0| A_{\mu}|H\rangle=i p_{\mu} f_{H}\right.
$$

Measure $\Gamma(H \rightarrow \ell \nu)$ experimentally Calculate f_{H} with lattice QCD

- Sub-percent precision for f_{H} require $\mathcal{O}\left(\alpha_{e m}\right)$ electromagnetic corrections $H \rightarrow \ell \nu(\gamma)$
- Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$
\rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

Approx. π^{-}, K^{-}as point-like

- $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$ and $K^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$

Precision determinations of CKM matrix elements

Determinations of CKM matrix elements $V_{q_{1} q_{2}}$ require meson decay constants f_{H}

$$
\left\ulcorner(H \rightarrow \ell \nu)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{1} q_{2}}\right|^{2} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{H}^{2}}\right)^{2} m_{H} f_{H}^{2}, \quad\langle 0| A_{\mu}|H\rangle=i p_{\mu} f_{H}\right.
$$

Measure $\Gamma(H \rightarrow \ell \nu)$ experimentally Calculate f_{H} with lattice QCD

- Sub-percent precision for f_{H} require $\mathcal{O}\left(\alpha_{e m}\right)$ electromagnetic corrections $H \rightarrow \ell \nu(\gamma)$
- Radiative leptonic decay rate $H \rightarrow \gamma \ell \nu$ required to subtract IR divergences in $H \rightarrow \ell \nu(\gamma)$
\rightarrow by the Bloch-Nordsieck mechanism [Bloch, Nordsieck, PRD 1937]

Approx. π^{-}, K^{-}as point-like

- $\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$ and $K^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \gamma$

Structure dependent form factors required

- $\pi^{-} \rightarrow e^{-} \bar{\nu}_{e} \gamma$ and $K^{-} \rightarrow e^{-} \bar{\nu}_{e} \gamma$

Regions of large photon energies

FCNC processes $B_{s}^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ and $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma \quad B_{s}^{0} \sim \bar{b} s$

- Hard photon removes helicity suppression $\left(m_{\ell} / m_{B}\right)^{2}$
- This process sensitive to all operators in the $b \rightarrow s \ell^{+} \ell^{-}$weak effective Hamiltonian including O_{9}, where slight tension with SM prediction exists

[^0]FCNC processes $B_{s}^{0} \rightarrow \ell^{+} \ell^{-} \gamma$ and $B^{0} \rightarrow \ell^{+} \ell^{-} \gamma \quad B_{s}^{0} \sim \bar{b} s$ $B^{0} \sim \bar{b} d$

- Hard photon removes helicity suppression $\left(m_{\ell} / m_{B}\right)^{2}$
- This process sensitive to all operators in the $b \rightarrow s \ell^{+} \ell^{-}$weak effective Hamiltonian including O_{9}, where slight tension with SM prediction exists
[Greljo, Salko, Smolkovic, Stangl, JHEP 2023 / arXiv:2212.10497]
- $\mathcal{B}\left(B^{0} \rightarrow \ell^{+} \ell^{-} \gamma\right)<\mathcal{O}\left(10^{-7}\right)$ for $\ell=e, \mu$ [BABAR: PRD $2008 /$ arxiv:0706.2870]
- $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<2.0 \times 10^{-9}$ for $m_{\mu \mu}>4.9 \mathrm{GeV}$ [LLCb: PRD 2022 / arxiv:2108.09283]

FCCC process $B^{-} \rightarrow \gamma \ell^{-} \bar{\nu}$

- Hard photon removes helicity suppression $\left(m_{\ell} / m_{B}\right)^{2}$
- For large $E_{\gamma}^{(0)}$, simplest decay that probes the inverse moment of the B meson lightcone distribution amplitude

$$
\frac{1}{\lambda_{B}}=\int_{0}^{\infty} d \omega \frac{\Phi_{B+}(\omega)}{\omega}
$$

- λ_{B} important input in QCD factorization approach to exclusive B decays, currently not well known
[See e.g., Beneke, Braun, Ji, Wei, arXiv:1804.04962/JHEP 2018;
Beneke, Buchalla, Neubert, Sachrajda, arXiv:hep-ph/9905312/PRL 1999]

FCCC process $B^{-} \rightarrow \gamma \ell^{-} \bar{\nu}$

- Hard photon removes helicity suppression $\left(m_{\ell} / m_{B}\right)^{2}$
- For large $E_{\gamma}^{(0)}$, simplest decay that probes the inverse moment of the B meson lightcone distribution amplitude

$$
\frac{1}{\lambda_{B}}=\int_{0}^{\infty} d \omega \frac{\Phi_{B+}(\omega)}{\omega}
$$

- λ_{B} important input in QCD factorization approach to exclusive B decays, currently not well known
[See e.g., Beneke, Braun, Ji, Wei, arXiv:1804.04962/JHEP 2018;
Beneke, Buchalla, Neubert, Sachrajda, arXiv:hep-ph/9905312/PRL 1999]
- Belle: $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu \gamma\right)<3.0 \times 10^{-6}\left(E_{\gamma}^{(0)}>1 \mathrm{GeV}\right)$ [arXiv:1810.12976/PRD 2018]

Experimental status of radiative leptonic decays

- $K^{-} \rightarrow e^{-} \bar{\nu} \gamma, K^{-} \rightarrow \mu^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow e^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma$
$\rightarrow K^{-}, \pi^{-}$partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]

Experimental status of radiative leptonic decays

- $K^{-} \rightarrow e^{-} \bar{\nu} \gamma, K^{-} \rightarrow \mu^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow e^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma$
$\rightarrow K^{-}, \pi^{-}$partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]
- $D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$ [BESIII: PRD $2017 /$ arXiv:1702.05837]
- $D^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<3.0 \times 10^{-5}$ [BESIII: PRD $2019 /$ arXiv:1902.03351]

Experimental status of radiative leptonic decays

- $K^{-} \rightarrow e^{-} \bar{\nu} \gamma, K^{-} \rightarrow \mu^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow e^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma$
$\rightarrow K^{-}, \pi^{-}$partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]
- $D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$ [BESIII: PRD $2017 /$ arXiv:1702.05837]
- $D^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<3.0 \times 10^{-5}$ [BESIII: PRD $2019 /$ arXiv:1902.03351]
- $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu \gamma\right)<3.0 \times 10^{-6}\left(E_{\gamma}^{(0)}>1 \mathrm{GeV}\right)$ [Belle: PRD $2018 /$ arXiv:1810.12976]
- Belle II expected to measure $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu \gamma\right)$ with 3.6% statistical uncertainty [Belle: PRD 2018 / arXiv:1810.12976]

Experimental status of radiative leptonic decays

- $K^{-} \rightarrow e^{-} \bar{\nu} \gamma, K^{-} \rightarrow \mu^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow e^{-} \bar{\nu} \gamma, \pi^{-} \rightarrow \mu^{-} \bar{\nu} \gamma$
$\rightarrow K^{-}, \pi^{-}$partial branching fractions, photon-energy spectra, and angular distributions known from multiple experiments. [See PDG review by M. Bychkov and G. D'Ambrosio, 2018]
- $D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$ [BESIII: PRD $2017 /$ arXiv:1702.05837]
- $D^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}^{(0)}>10 \mathrm{MeV}\right)<3.0 \times 10^{-5}$ [BESIII: PRD $2019 /$ arXiv:1902.03351]
- $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu \gamma\right)<3.0 \times 10^{-6}\left(E_{\gamma}^{(0)}>1 \mathrm{GeV}\right)$ [Belle: PRD $2018 /$ arXiv:1810.12976]
- Belle II expected to measure $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu \gamma\right)$ with 3.6% statistical uncertainty [Belle: PRD 2018 / arXiv:1810.12976]
- $\mathcal{B}\left(B^{0} \rightarrow \ell^{+} \ell^{-} \gamma\right)<\mathcal{O}\left(10^{-7}\right)$ for $\ell=e, \mu$ [BABAR: PRD $2008 /$ arXiv:0706.2870]
- $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<2.0 \times 10^{-9}$ for $m_{\mu \mu}>4.9 \mathrm{GeV}$ [LHCb: PRD $2022 /$ arXiv:2108.09283]

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Review of lattice calculations of radiative leptonic decays

Outline for section 2

(1) Introduction and Motivation
(2) Extracting the hadronic tensor with Euclidean correlation functions

Methods study
(4) $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary form factor results

Decay amplitude

To calculate decay amplitude:

- use effective Hamiltonian for weak current
- use 1st order perturbation theory for QED piece

Decay amplitude

To calculate decay amplitude:

- use effective Hamiltonian for weak current
- use 1st order perturbation theory for QED piece

Decay amplitude given by

$$
\mathcal{A}=\frac{G_{F} V_{c s}}{\sqrt{2}}\left[e \epsilon_{\mu}^{*} \bar{\ell} \gamma_{\nu}\left(1-\gamma_{5}\right) \nu \cdot T^{\mu \nu}-i e Q_{\ell} f_{D_{s}} \cdot \bar{\ell} \epsilon_{\mu}^{*} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu\right]
$$

QCD physics left to calculate is Hadronic tensor $T_{\mu \nu}$

Hadronic Tensor and Form Factors

$$
T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma} \cdot x}\langle 0| \mathbf{T}\left(J_{\mu}^{\text {em }}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle
$$

Hadronic Tensor and Form Factors

$$
\begin{aligned}
& J_{\mu}^{e m}=\sum_{q} e_{q} \bar{q} \gamma_{\mu} q, \quad J_{\nu}^{\text {weak }}=\bar{q}_{1} \gamma_{\nu}\left(1-\gamma_{5}\right) q_{2} \\
& T_{\mu \nu}=-i \int d^{4} \times e^{\text {weak }} \cdot J_{\mu}^{\text {ip } x}\langle 0| \mathbf{T}\left(J_{\mu}^{\text {em }}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle \\
& =\epsilon_{\mu \nu \tau \rho} \rho_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(v \cdot p_{\gamma}\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{\left(v \cdot p_{\gamma}\right)} m_{H} f_{H}+\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

Hadronic Tensor and Form Factors

$$
\begin{gathered}
T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma} \cdot x}\langle 0| \mathbf{T}\left(J_{\mu}^{\mathrm{em}}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle \\
=\epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(v \cdot p_{\gamma}\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{\left(v \cdot p_{\gamma}\right)} m_{H} f_{H}+\left(p_{\gamma}\right)_{\mu} \text {-terms } \\
F_{A, S D}=F_{A}-\left(-Q_{\ell} f_{H} / E_{\gamma}^{(0)}\right), \quad E_{\gamma}^{(0)}=p_{B} \cdot p_{\gamma} / m_{B}
\end{gathered}
$$

Hadronic Tensor and Form Factors

$$
\begin{gathered}
T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma} \cdot x}\langle 0| \mathbf{T}\left(J_{\mu}^{\mathrm{em}}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle \\
=\epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(v \cdot p_{\gamma}\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{\left(v \cdot p_{\gamma}\right)} m_{H} f_{H}+\left(p_{\gamma}\right)_{\mu} \text {-terms } \\
F_{A, S D}=F_{A}-\left(-Q_{\ell} f_{H} / E_{\gamma}^{(0)}\right), \quad E_{\gamma}^{(0)}=p_{B} \cdot p_{\gamma} / m_{B}
\end{gathered}
$$

Goal: Calculate F_{V} and $F_{A, S D}$ as a function of $E_{\gamma}^{(0)}$

Euclidean correlation function

$$
\begin{gathered}
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \\
\phi_{H}^{\dagger} \sim \bar{Q} \gamma_{5} u
\end{gathered}
$$

Euclidean correlation function

$$
\begin{gathered}
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \\
\phi_{H}^{\dagger} \sim \bar{Q} \gamma_{5} u
\end{gathered}
$$

Define time-integrated correlation functions for each time ordering

Euclidean correlation function

$$
\begin{gathered}
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \\
\phi_{H}^{\dagger} \sim \bar{Q} \gamma_{5} u
\end{gathered}
$$

Define time-integrated correlation functions for each time ordering

$$
\begin{aligned}
& I_{\mu \nu}^{<}\left(T, t_{H}\right)=\int_{-T}^{0} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right) \\
& I_{\mu \nu}^{>}\left(T, t_{H}\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)
\end{aligned}
$$

Euclidean correlation function

$$
\begin{gathered}
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \\
\phi_{H}^{\dagger} \sim \bar{Q} \gamma_{5} u
\end{gathered}
$$

Define time-integrated correlation functions for each time ordering

$$
\begin{aligned}
& I_{\mu \nu}^{<}\left(T, t_{H}\right)=\int_{-T}^{0} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right) \\
& I_{\mu \nu}^{>}\left(T, t_{H}\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)
\end{aligned}
$$

Show relation between $I_{\mu \nu}\left(T, t_{H}\right)$ and $T_{\mu \nu}$ \rightarrow compare spectral decompositions of both time orderings of $I_{\mu \nu}$ and $T_{\mu \nu}$

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)}
$$

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
\begin{aligned}
& T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)} \\
& I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right)
\end{aligned}
$$

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
\begin{aligned}
& T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)} \\
& I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \\
& \quad=\sum_{m} e^{E_{m} t_{H}} \frac{\left\langle m\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{m, \vec{p}_{H}}} \\
& \quad \times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)}\left[1-e^{\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right) T}\right]
\end{aligned}
$$

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
\begin{aligned}
& T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)} \\
& I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \quad \begin{array}{l}
t_{H} \rightarrow-\infty \text { to achieve } \\
\text { ground state saturation }
\end{array} \\
& \quad=\sum_{m} e^{E_{m} t_{H}} \frac{\left\langle m\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{m, \vec{p}_{H}}} \\
& \quad \times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)}\left[1-e^{\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right) T}\right]
\end{aligned}
$$

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
\begin{aligned}
& T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)} \\
& I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \quad \begin{array}{l}
t_{H} \rightarrow-\infty \text { to achieve } \\
\text { ground state saturation }
\end{array} \\
& \quad=\sum_{m} e^{E_{m} t_{H}} \frac{\left\langle m\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{m, \vec{p}_{H}}} \\
& \quad \times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{\left.n, \vec{p}_{\gamma}\right)}\right.}\left[1-e^{\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right) T}\right]
\end{aligned}
$$

- Require $E_{\gamma}-E_{n, \vec{p}_{\gamma}}<0$
- Because the states $\left|n\left(\vec{p}_{\gamma}\right)\right\rangle$ have mass, $\sqrt{m_{n}^{2}+\vec{p}_{\gamma}^{2}}>\left|\vec{p}_{\gamma}\right|$ is automatically satisfied

Euclidean spectral decomposition of $I_{\mu \nu}^{>}$

Time ordering: $t_{e m}>0$

$$
T_{\mu \nu}^{>}=\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)}
$$

$$
I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \quad \begin{aligned}
& t_{H} \rightarrow-\infty \text { to achieve } \\
& \text { ground state saturation }
\end{aligned}
$$

$$
=\sum e^{E_{m} t_{H}} \frac{\left\langle m\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{\rho \Sigma} \quad T \rightarrow \infty \text { to remove unwanted exponentials }
$$

that come with intermediate states

$$
\times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{\gamma}}\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right)}\left[1-e^{\left(E_{\gamma}-E_{n, \vec{p}_{\gamma}}\right) T}\right]
$$

- Require $E_{\gamma}-E_{n, \vec{p}_{\gamma}}<0$
- Because the states $\left|n\left(\vec{p}_{\gamma}\right)\right\rangle$ have mass, $\sqrt{m_{n}^{2}+\vec{p}_{\gamma}^{2}}>\left|\vec{p}_{\gamma}\right|$ is automatically satisfied

Final relation

For $\mathbf{p}_{\gamma} \neq \mathbf{0}$,

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Outline for section 3

(1) Introduction and Motivation

(2) Extracting the hadronic tensor with Euclidean correlation functions
(3) Methods study
(4) $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary form factor results

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty} \lim _{H} \rightarrow-\infty \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty} \lim _{H} \rightarrow-\infty \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{\text {em }}$ for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty} \lim _{H} \rightarrow-\infty \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free

2: 4d sequential propagator through $J_{\mu}^{e m} \rightarrow$ calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free

2: 4d sequential propagator through $J_{\mu}^{e m} \rightarrow$ calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free

2: 4d sequential propagator through $J_{\mu}^{e m} \rightarrow$ calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty} \lim _{H} \rightarrow-\infty \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{\text {em }}$ for free

2: 4d sequential propagator through $J_{\mu}^{e m} \rightarrow$ calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

Limitation of 4d method: cannot resolve time orderings

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{\text {em }}$ for free

2: 4d sequential propagator through $J_{\mu}^{e m} \rightarrow$ calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

Limitation of 4d method: cannot resolve time orderings
$\Longrightarrow \mathbf{4 d}^{>,<}$method: perform two sequential solves to
 resolve $t_{e m}<0$ and $t_{e m}>0$

Past lattice studies

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim _{\infty} \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

- [1] we presented results at Lattice 2019 using 3d method
- fitting to a constant looking for plateaus in T and t_{H}
- $[2,3]$ use 4 d method to perform realistic physical calculation
- set $T=N_{T} / 2$ and fit to constant in t_{H} where data has plateaued
- [4] perform a methods study comparing 3d and 4d methods
- data does not always plateau in T and t_{H}
\rightarrow develop fit methods to extrapolate to $T \rightarrow \infty$ and $t_{H} \rightarrow-\infty$
[1] [CFK, Lehner, Meinel, Soni, arXiv:1907.00279]
[2] [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2006.05358]
[3] [Frezzotti, Gagliardi, Lubicz, Martinelli, Mazzetti, Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2306.05904]
[4] [D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:2302.01298]

Comparison of 3d and 4d methods

Show fit methods to take $\lim _{T \rightarrow \infty}$ and $\lim _{t_{H} \rightarrow-\infty}$

- fitting only $4 d^{>},<$method data
- fitting only 3d method data
- performing global fits to both 3 d and $4 \mathrm{~d}^{>},<$method data

Goal: find methods with best control over $\lim _{T \rightarrow \infty}$ and $\lim _{t_{H} \rightarrow-\infty}$ limits for cheapest cost

Simulation parameters for 3d/4d method comparison

- $N_{f}=2+1$ DWF, RBC/UKQCD gauge ensemble

ensemble	$(L / a)^{3} \times(T / a)$	L_{5} / a	$\approx a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$\approx M_{\pi}(\mathrm{MeV})$	$N_{\text {conf }}$
24 I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25

- Use local currents with mostly non-perturbative renormalization
- charm valence quarks \rightarrow Möbius domain-wall with "stout" smearing
- u/d/s valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging with 1 exact and 16 sloppy solves per configuration
- \mathbb{Z}_{2} random wall sources

Parameters for $D_{s} \rightarrow \gamma \ell \nu$ runs

Meson and photon momenta:

Method	Source	Meson Momentum	Photon Momentum
3 d	\mathbb{Z}_{2}-wall	$\vec{p}_{D_{s}}=(0,0,0)$	$\left\|\vec{p}_{\gamma}\right\|^{2} \in(2 \pi / L)^{2}\{1,2,3,4\}$
4 d	\mathbb{Z}_{2}-wall	$\vec{p}_{D_{s}, z} \in 2 \pi / L\{-1,0,1,2\}$	$\vec{p}_{\gamma, z}=2 \pi / L$

$4 d^{>,<}$method:

- 3 values of integration range $T / a \in\{6,9,12\}$

3d method:

- 3 values of source-sink separation $t_{H} / a \in\{-6,-9,-12\}$

Fit form factors $F\left(t_{H}, T\right)$ directly instead of time-integrated correlation function $I_{\mu \nu}\left(t_{H}, T\right)$

Fit form: $4 \mathbf{d}^{>,<}$method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form: $4 \mathbf{d}^{>}, \ll$ method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}>0$:

$$
F^{>}\left(t_{H}, T\right)=F^{>}+B_{F}^{>} e^{\left(E_{\gamma}-E^{>}\right) T}+C_{F}^{>} e^{\Delta E t_{H}}
$$

- fit parameters

Fit form: $4 \mathbf{d}^{>}, \ll$ method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}>0$:

$$
F^{>}\left(t_{H}, T\right)=F^{>}+B_{F}^{>} e^{\left(E_{\gamma}-E^{>}\right) T}+C_{F}^{>} \overbrace{e^{\Delta E t_{H}}}
$$

- fit parameters

Fit form: $4 \mathbf{d}^{>}, \ll$ method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}>0$:

$$
F^{>}\left(t_{H}, T\right)=F^{>}+B_{F}^{>} \overbrace{e^{\left(E_{\gamma}-E^{>}\right) T}}+C_{F}^{>} \overbrace{e^{\Delta E t_{H}}}
$$

- fit parameters

$4 \mathbf{d}^{>,<}$method: Fits to F_{V} for $t_{\mathrm{em}}>0$ time ordering

$$
F^{>}\left(t_{H}, T\right)=F^{>}+B_{F}^{>} \overbrace{e^{\left(E_{\gamma}-E^{>}\right) T}}+C_{F}^{>} \overbrace{e^{\Delta E t_{H}}}
$$

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}<0$:

$$
F^{<}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}\left(1+B_{F, \text { exc }}^{<} e^{\Delta E\left(T+t_{H}\right)}\right) e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}+C_{F}^{<} e^{\Delta E t_{H}}
$$

- fit parameters

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}<0$:

$$
\begin{gathered}
F^{<}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}(1+B_{F, \text { exc }}^{<} \overbrace{e^{\Delta E\left(T+t_{H}\right)}}) e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}+C_{F}^{<} \overbrace{e^{\Delta E t_{H}}} \\
\quad \text { fit parameters }
\end{gathered}
$$

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}<0$:

$$
\begin{gathered}
F^{<}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}(1+B_{F, \text { exc }}^{<} \overbrace{e^{\Delta E\left(T+t_{H}\right)}}) \overbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}+C_{F}^{<} \overbrace{e^{\Delta E t_{H}}} \\
\square \text { fit parameters }
\end{gathered}
$$

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Time ordering $t_{e m}<0$:

$$
\begin{gathered}
F^{<}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}(1+B_{F, \text { exc }}^{<} \overbrace{e^{\Delta E\left(T+t_{H}\right)}}) \overbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}+C_{F}^{<} \overbrace{e^{\Delta E t_{H}}} \\
\quad \text { fit parameters }
\end{gathered}
$$

To help stabilize the fits
\rightarrow Determine ΔE from the pseudoscalar two-point correlation function
\rightarrow use result as Gaussian prior in form factor fits

3d method: Fits to F_{V} for $t_{\mathrm{em}}<0$ time ordering

$$
F_{V}^{<}\left(t_{D_{s}}, T\right)=F_{V}^{<}+B_{F}^{<}(1+B_{F, \text { exc }}^{<} \overbrace{\left.e^{\Delta E\left(T+t_{H}\right)}\right)} \overbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}+C_{F}^{<} \overbrace{e^{\Delta E t_{H}}}
$$

F_{V} as function of $E_{\gamma}^{(0)}$ using $3 \mathbf{d}$ and $4 \mathbf{d}$ methods

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

F_{V} as function of $E_{\gamma}^{(0)}$ using $3 \mathbf{d}$ and $4 \mathbf{d}$ methods

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

Summary:
F_{V} as function of $E_{\gamma}^{(0)}$ using $3 \mathbf{d}$ and $4 \mathbf{d}$ methods

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

Summary:

- 3d and $4 d^{>,<}$methods offer good control over systematics
F_{V} as function of $E_{\gamma}^{(0)}$ using 3d and 4d methods

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

Summary:

- 3d and $4 d^{>,<}$methods offer good control over systematics
- Combined fits offer small improvement relative to individual
F_{V} as function of $E_{\gamma}^{(0)}$ using $3 \mathbf{d}$ and $4 \mathbf{d}$ methods

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

Summary:

- 3d and $4 d^{>,<}$methods offer good control over systematics
- Combined fits offer small improvement relative to individual

Compare computational cost of 3 d and $4 \mathrm{~d}^{>},<$methods

Number of propagator solves per configuration

Source	3 d	$4 \mathrm{~d}^{>,<}$
point	$2\left(1+N_{t_{H}} N_{p_{H}}\right)$	
\mathbb{Z}_{2} wall	$2\left(1+N_{t_{H}} N_{p_{H}}+N_{p_{H}} N_{p_{\gamma}}\right)$	

Number of propagator solves per configuration

Source	3 d	$4 \mathrm{~d}>,<$
point	$2\left(1+N_{t} N_{p_{H}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}\right)$
\mathbb{Z}_{2} wall	$2\left(1+N_{t H} N_{p_{H}}+N_{p_{H}} N_{p_{\gamma}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}+N_{p_{\gamma}} N_{p_{H}}\right)$

Number of propagator solves per configuration

Source	3 d	$4 \mathrm{~d}>,<$
point	$2\left(1+N_{t+} N_{p_{H}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}\right)$
\mathbb{Z}_{2} wall	$2\left(1+N_{t H} N_{p_{H}}+N_{p_{H}} N_{p_{\gamma}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}+N_{p_{\gamma}} N_{p_{H}}\right)$

Number of propagator solves per configuration

Source	3 d	$4 \mathrm{~d}^{>,<}$	solves to resolve
point	$2\left(1+N_{t_{H}} N_{p_{H}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}\right)$	
\mathbb{Z}_{2} wall	$2\left(1+N_{t_{H}} N_{p_{H}}+N_{p_{H}} N_{p_{\gamma}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}+N_{p_{\gamma}} N_{p_{H}}\right)$	

Number of propagator solves per configuration

- $4 d^{>},<$method generally more expensive than $3 d$ method if cover full $E_{\gamma}^{(0)}$ range

Number of propagator solves per configuration

Source	3 d	$4 \mathrm{~d}^{>},<$
point	$2\left(1+N_{t H} N_{p_{H}}\right)$	$2\left(1+2 \times 4 N_{T} N_{p_{\gamma}}\right)$
solves to resolve		
time orders		

- $4 d^{>},<$method generally more expensive than $3 d$ method if cover full $E_{\gamma}^{(0)}$ range

> 3d method offers good control over systematics for cheapest cost

Improved estimators using 3d method

Simulation parameters for final 3d method dataset

- $N_{f}=2+1$ DWF, 3 RBC/UKQCD gauge ensembles

ensemble	$(L / a)^{3} \times(T / a)$	L_{5} / a	$\approx a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$\approx M_{\pi}(\mathrm{MeV})$	$N_{\text {conf }}$
24 I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25
32 I	$32^{3} \times 64$	16	2.383	0.004	0.03	304	26
48 I	$48^{3} \times 96$	24	1.730	0.00078	0.0362	139	7

- Use local currents with mostly non-perturbative renormalization
- charm valence quarks \rightarrow Möbius domain-wall with "stout" smearing
- u/d/s valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging 4 exact and 64 sloppy solves per config

Simulation parameters for final 3d method dataset

- $N_{f}=2+1$ DWF, 3 RBC/UKQCD gauge ensembles

ensemble	$(L / a)^{3} \times(T / a)$	L_{5} / a	$\approx a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$\approx M_{\pi}(\mathrm{MeV})$	$N_{\text {conf }}$
24 I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25
32 I	$32^{3} \times 64$	16	2.383	0.004	0.03	304	26
48 I	$48^{3} \times 96$	24	1.730	0.00078	0.0362	139	7

- Use local currents with mostly non-perturbative renormalization
- charm valence quarks \rightarrow Möbius domain-wall with "stout" smearing
- u/d/s valence quarks \rightarrow same DWF action as sea quarks
- Neglect disconnected diagrams
- Use all-mode averaging 4 exact and 64 sloppy solves per config

Final improved estimators using 3d method:

- \mathbb{Z}_{2} random wall sources and point sources
- Two datasets: $J_{\nu}^{\text {weak }}(0)$ or $J_{\mu}^{\text {em }}(0)$
- For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta (only exponentially small FVEs introduced)

Alternate correlation function

- Fix em current at origin: $J_{\mu}^{\text {em }}(0)$

$$
C_{3, \mu \nu}^{\mathrm{EM}}\left(t_{W}, t_{H}\right)=\overbrace{e^{E_{H} t_{W}}} \int d^{3} x \int d^{3} y \overbrace{e^{-i \vec{p} H \cdot \vec{x}}} e^{i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}(0) J_{\nu}^{\text {weak }}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
$$

Alternate correlation function

- Fix em current at origin: $J_{\mu}^{\text {em }}(0)$

$$
C_{3, \mu \nu}^{\mathrm{EM}}\left(t_{W}, t_{H}\right)=\overbrace{e^{E_{H} t_{W}}} \int d^{3} x \int d^{3} y \overbrace{e^{-i \vec{p}_{H} \cdot \vec{x}}} e^{i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}(0) J_{\nu}^{\text {weak }}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
$$

- $e^{E_{H} t_{W}}$ and $e^{-i \vec{p} H \cdot \vec{x}}$ shift weak current relative to other operators

Alternate correlation function

- Fix em current at origin: $J_{\mu}^{\text {em }}(0)$

$$
C_{3, \mu \nu}^{\mathrm{EM}}\left(t_{W}, t_{H}\right)=\overbrace{e^{E_{H} t_{W}}} \int d^{3} x \int d^{3} y \overbrace{e^{-i \vec{p}_{H} \cdot \vec{x}}} e^{i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\text {em }}(0) J_{\nu}^{\text {weak }}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
$$

- $e^{E_{H} t_{W}}$ and $e^{-i \vec{p} H \cdot \vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free

Alternate correlation function

- Fix em current at origin: $J_{\mu}^{\mathrm{em}}(0)$

$$
C_{3, \mu \nu}^{\mathrm{EM}}\left(t_{W}, t_{H}\right)=\overbrace{e^{E_{H} t_{W}}} \int d^{3} x \int d^{3} y \overbrace{e^{-i \vec{p}_{H} \cdot \vec{x}}} e^{i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}(0) J_{\nu}^{\text {weak }}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
$$

- $e^{E_{H} t_{w}}$ and $e^{-i \vec{p} \cdot \vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free
- define analogous time-integrated correlation function $I_{\mu \nu}^{<, \mathrm{EM}}\left(T, t_{H}\right)$ and $I_{\mu \nu}^{>, \mathrm{EM}}\left(T, t_{H}\right)$

Alternate correlation function

- Fix em current at origin: $J_{\mu}^{\mathrm{em}}(0)$

$$
C_{3, \mu \nu}^{E M}\left(t_{W}, t_{H}\right)=\overbrace{e^{E_{H} t_{W}}} \int d^{3} x \int d^{3} y \overbrace{e^{-i \vec{p}_{H} \cdot \vec{x}}}^{\overbrace{}^{i \vec{p}_{\gamma} \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\text {em }}(0) J_{\nu}^{\text {weak }}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle) .}
$$

- $e^{E_{H} t_{W}}$ and $e^{-i \vec{p}_{H} \cdot \vec{x}}$ shift weak current relative to other operators
- using point sources, can reuse sequential propagators to get for free
- define analogous time-integrated correlation function $I_{\mu \nu}^{<, \mathrm{EM}}\left(T, t_{H}\right)$ and $I_{\mu \nu}^{>, \mathrm{EM}}\left(T, t_{H}\right)$

Spectral decompositions show us

$$
\begin{aligned}
& I_{\mu \nu}^{<, \mathrm{EM}}\left(T, t_{H}\right)=I_{\mu \nu}^{>}\left(T, t_{H}\right)+\text { excited state effects } \\
& I_{\mu \nu}^{>, \mathrm{EM}}\left(T, t_{H}\right)=I_{\mu \nu}^{<}\left(T, t_{H}\right)+\text { excited state effects }
\end{aligned}
$$

Perform combined fits to take advantage of this relation

Alternate correlation function

- Can integrate past $T=-t_{H}$ using alternate correlation function

Alternate correlation function: vector form factor

Non-perturbative subtraction of IR divergent lattice artifacts

Blue data: improved subtraction of point-like contribution

Taking ratios of correlation functions

$$
C_{3, \mu \nu}^{\text {improved }}\left(\vec{p}_{\gamma}, t\right)=C_{3, \mu \nu}^{\text {point }}\left(\vec{p}_{\gamma}, t\right) \frac{C_{3, \mu \nu}^{\mathbb{Z}_{2}}\left(\vec{p}^{*}, t\right)}{C_{3, \mu \nu}^{\text {point }}\left(\vec{p}^{*}, t\right)}, \quad \vec{p}^{*}=\frac{2 \pi}{L} n
$$

Averaging over $\pm \vec{p}_{\gamma}$

Outline for section 4

(1) Introduction and Motivation

(2) Extracting the hadronic tensor with Euclidean correlation functions
(3) Methods study
(4) $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary form factor results

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary results

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$ preliminary results

[1] [C. Donald, et. al, PRL 2014/arXiv:1312.5264]
[2] [Pullin, Zwicky, JHEP 2021/arXiv:2106.13617]
similar cancellations observed in $D_{s} D_{s}^{*} \gamma$ couplings, corresponding to pole residues in $D_{s} \rightarrow \gamma \ell \nu_{\ell}$ form factors [1],[2]

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$ comparison

sign: different convention in FF decomp

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$ comparison

sign: different convention in FF decomp

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$ comparison

Future work

- Investigating different fit models to parameterize lattice form factors
- Improving statistics with new computing allocation from ACCESS
- Go to the B using new RBC-UKQCD $a^{-1} \approx 3.5 \mathrm{GeV}$ and 4.5 GeV lattices
- Have data for π, K, D, analyze this and compare our results to physical calculation in [Desiderio et. al, PRD 2021, arXiv:2006.05358] and experiment as was done in [Frezzotti et. al, PRD 2021, arXiv:2012.02120]

Summary

- Radiative leptonic decays are physically interesting
 at large and small photon momentum

Summary

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim _{n \rightarrow-\infty} \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} I_{\mu \nu}\left(T, t_{H}\right)
$$ QCD calc., need to take $T \rightarrow \infty$ and $t_{H} \rightarrow-\infty$

Summary

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} I_{\mu \nu}\left(T, t_{H}\right)
$$ QCD calc., need to take $T \rightarrow \infty$ and $t_{H} \rightarrow-\infty$

- Compared 3d sequential propagator and 4d sequential propagtors

\rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost

Summary

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_{H} \rightarrow-\infty$
- Compared 3d sequential propagator and 4d sequential propagtors
\rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost
- Implemented number of improvements to 3d method

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim _{\text {time }} \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} I_{\mu \nu}\left(T, t_{H}\right)
$$

Summary

- Radiative leptonic decays are physically interesting at large and small photon momentum
- Two sources of systematic errors inherent in lattice QCD calc., need to take $T \rightarrow \infty$ and $t_{H} \rightarrow-\infty$
- Compared 3d sequential propagator and 4d sequential propagtors
\rightarrow found 3d method to offer good control over systematic uncertainties for cheapest cost
- Implemented number of improvements to 3d method
- Presented preliminary results for $D_{s} \rightarrow \gamma \ell \nu$ on three RBC/UKQCD ensembles using DWF for all flavors

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} I_{\mu \nu}\left(T, t_{H}\right)
$$

Main Take-Away Points

Main Take-Away Point 1: Radiative leptonic decays are interesting in the regions of small and large photon energies

Main Take-Away Point 2: We have developed methods to achieve high precision for small computational cost
for more details: D. Giusti, CFK, C. Lehner, S. Meinel, A. Soni, PRD 2023 / arXiv:[2302.01298]

Main Take-Away Point 3: Working on physical calculation of $D_{s} \rightarrow \gamma \ell \nu_{\ell}$, out soon

Backup slides

Time order visualization

Minkowski spectral decomposition of $T_{\mu \nu}$

Time ordering $t_{e m}<0$:

$$
\begin{gathered}
\widehat{1}=|0\rangle\langle 0|+\sum_{n} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{n}(\vec{p})}|n(\vec{p})\rangle\langle n(\vec{p})| \\
T_{\mu \nu}^{<}=-i \int_{-\infty(1-i \epsilon)}^{0} d t_{e m} \int d^{3} \times e^{i p_{\gamma} \cdot \times}\langle 0| J_{\nu}^{\text {weak }}(0) \widehat{1} J_{\mu}^{e m}(x)\left|B^{-}\left(\vec{p}_{B}\right)\right\rangle \\
=-\sum_{n} \frac{1}{2 E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}} \frac{1}{E_{\gamma}+E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}-E_{B, \vec{p}_{B}}-i \epsilon} \\
\times\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\vec{p}_{B}-\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{B}-\vec{p}_{\gamma}\right)\right| J_{\mu}^{e m}(0)\left|B\left(\vec{p}_{B}\right)\right\rangle
\end{gathered}
$$

Euclidean spectral decomposition of $I_{\mu \nu}$

Time ordering $t_{e m}<0$: (for large negative t_{B})

$$
\begin{aligned}
I_{\mu \nu}^{<}\left(t_{B}, T\right) & =\int_{-T}^{0} d t_{e m} e^{E_{\gamma} t} C_{3, \mu \nu}\left(t_{e m}, t_{B}\right) \\
& =\left\langle B\left(\vec{p}_{B}\right)\right| \phi_{B}^{\dagger}(0)|0\rangle \frac{1}{2 E_{B, \vec{p}_{B}}} e^{E_{B} t_{B}} \quad \text { (*all times are now Euclidean) } \\
& \times \sum_{n} \frac{1}{2 E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}} \frac{\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\vec{p}_{B}-\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{B}-\vec{p}_{\gamma}\right)\right| J_{\mu}^{e m}(0)\left|B\left(\vec{p}_{B}\right)\right\rangle}{E_{\gamma}+E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}-E_{B, \vec{p}_{B}}} \\
& \times\left[1-e^{\left.-\left(E_{\gamma}+E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}-E_{B, \vec{p}_{B}}\right) T\right]}\right.
\end{aligned}
$$

Require $E_{\gamma}+E_{n, \vec{p}_{B}-\vec{p}_{\gamma}}-E_{B, \vec{p}_{B}}>0$ to get rid of unwanted exponential States $\left|n\left(\vec{p}_{B}-\vec{p}_{\gamma}\right)\right\rangle$ has same flavor quantum numbers as B meson
$\rightarrow E_{n, \mathbf{p}_{B}-\mathbf{p}_{\gamma}} \geq E_{B, \mathbf{p}_{B}-\mathbf{p}_{\gamma}}=\sqrt{m_{B}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}$
For $\mathbf{p}_{\gamma} \neq 0,\left|\mathbf{p}_{\gamma}\right|+\sqrt{m_{n}^{2}+\left(\mathbf{p}_{B}-\mathbf{p}_{\gamma}\right)^{2}}>\sqrt{m_{B}^{2}+\mathbf{p}_{B}}$ is automatically satisfied

Comparison to experiment and lattice: [PRD 2021/arXiv:2012.02120]

Depends on $F^{ \pm}\left(x_{\gamma}\right)=F_{V}\left(x_{\gamma}\right) \pm F_{A, S D}\left(x_{\gamma}\right)$, at $\mathcal{O}\left(\alpha_{\mathrm{em}}\right)$, three pieces

- Point-like (pt): universal, does not probe internal structure of meson
- Structure-dependent: SD $\sim \mathrm{SD}^{+}\left(\left(F^{+}\right)^{2}\right)+\mathrm{SD}^{-}\left(\left(F^{-}\right)^{2}\right)$
- Interference between (pt) and (SD): INT $\sim \operatorname{INT}^{-}\left(F^{+}\right)+\operatorname{INT}^{-}\left(F^{-}\right)$

KLOE experiment

- $K \rightarrow e \nu_{e} \gamma$: perform cuts so senstive to mainly $\left.\mathrm{SD}^{+} \Longrightarrow\left(F^{+}\right)^{2}\right)$ consistent
- $K \rightarrow \mu \nu_{\mu} \gamma$: perform cuts so senstive to

E787 experiment:

- $K \rightarrow \mu \nu_{\mu} \gamma$: perform cuts so senstive to mainly $\left.\mathrm{SD}^{+} \Longrightarrow\left(F^{+}\right)^{2}\right)$, slight dependence on $\mathrm{SD}^{-}+\mathrm{INT}^{-}$at small x_{γ}
- Tension between prediction for $F\left(x_{\gamma}\right)^{+}$between KLOE and E787

Rough summary

$$
\text { Let } F^{ \pm}\left(x_{\gamma}\right)=F_{V}\left(x_{\gamma}\right) \pm F_{A, S D}\left(x_{\gamma}\right) \text {, then }
$$

Piece	QCD FF
PT	none
SD $^{+}$	$\left(F^{+}\right)^{2}$
SD $^{-}$	$\left(F^{-}\right)^{2}$
INT $^{+}$	F^{+}
INT $^{-}$	F^{-}

Experiment	Process	Sensitive to	Theory vs Exp.
KLOE	$K \rightarrow e \nu_{e} \gamma$	SD^{+}	Agree
E787	$K \rightarrow \mu \nu_{\mu} \gamma$	$\mathrm{SD}^{+}, \mathrm{SD}^{-}+\mathrm{INT}^{-}$	Tension
ISTRA+	$K \rightarrow \mu \nu_{\mu} \gamma$	INT^{-}	Tension
OKA	$K \rightarrow \mu \nu_{\mu} \gamma$	INT^{-}	Tension
PIBETA	$\pi \rightarrow e \nu_{e} \gamma$	SD^{+}	Tension

Fit form: 4d method

Use fit ranges where data has plateaued in t_{H}, i.e. $t_{H} \rightarrow-\infty$
Include terms to fit
(1) unwanted exponential from first intermediate state

Limitation of 4d method \rightarrow cannot resolve the two time orderings \rightarrow Fit sum of both time orderings $F_{V}\left(T, t_{H}\right)=F_{V}^{<}\left(T, t_{H}\right)+F_{V}^{>}\left(T, t_{H}\right)$

$$
\begin{gathered}
F\left(t_{H}, T\right)=F+B_{F}^{<} \underbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}_{t_{e m}<0}+B_{F}^{>} \underbrace{e^{\left(E_{\gamma}-E^{>}\right) T}}_{t_{e m}>0} \\
\text { fit parameters }
\end{gathered}
$$

Only have three values of T, fitting multiple exponentials not possible \rightarrow Use broad Gaussian prior on $E^{>}$exclude unphysical values

Comparison of 4d and 4d>,<

$$
\begin{gathered}
x_{\gamma}=2 E_{\gamma}^{(0)} / m_{D_{s}} \\
0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}
\end{gathered}
$$

Summary:

- Cost $4 d^{>},<$method roughly twice $4 d$ method
- $4 d^{>},<$resolves time orders, allows better control over $T \rightarrow \infty$ limit
- $4 d^{>},<$method smaller uncertainty than 4 d method

Infinite volume approximation

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

Infinite volume approximation

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

Strategy:

- Work in rest frame of D_{s} meson
- Calculate correlation function for arbitrary values of photon momentum
- Propagator solves per config
$\rightarrow 2\left(1+N_{t_{H}}\right)$

Infinite volume approximation

For point-sources use translational invariance to fix em/weak operator at origin \rightarrow use "infinite-volume approximation" to generate data at arbitrary photon momenta \rightarrow only exponentially small FVEs introduced

Strategy:

- Work in rest frame of D_{s} meson
- Calculate correlation function for arbitrary values of photon momentum
- Propagator solves per config

$$
\rightarrow 2\left(1+N_{t_{H}}\right)
$$

Photon momenta for 241 ensemble:

$$
\begin{gathered}
p_{\gamma, z}=2 \pi / L \times\{0.1,0.2,0.4,0.6,0.8,1.0,1.4,1.8,2.2,2.4\} \\
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{\gamma} \cdot \vec{x}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
\end{gathered}
$$

Infinite volume approximation

We assume there exist $c, d, \Lambda, \Lambda^{\prime} \in \mathbb{R}^{+}$and $L_{0} \in \mathbb{N}$ for which

$$
\tilde{C}^{L}(q) \equiv \sum_{x=-L / 2}^{L / 2-1} C^{L}(x) e^{i q x}
$$

for all x with $-L / 2 \leq x \leq L / 2$ and $L \geq L_{0}$ and

$$
\left|C^{\infty}(x)\right| \leq d e^{-\Lambda^{\prime}|x|}
$$

for all x with $|x|>L / 2$. We now define

$$
\left|C^{\infty}(x)-C^{L}(x)\right| \leq c e^{-\Lambda L} \quad \text { and } \quad \tilde{C}^{\infty}(q) \equiv \sum_{x=-\infty}^{\infty} C^{\infty}(x) e^{i q x}
$$

Under the above assumptions, it then follows that there is a $\tilde{c} \in \mathbb{R}^{+}$for which

$$
\left|\tilde{C}^{\infty}(q)-\tilde{C}^{L}(q)\right| \leq \tilde{c} e^{-\Lambda_{0} L}
$$

for all $q \in[-\pi, \pi]$ and all $L \geq L_{0}$, with $\Lambda_{0} \equiv \min \left(\Lambda, \Lambda^{\prime} / 2\right)$.

Fits to 3d data for F_{V} with improved methods

Fits to 3d data for $F_{A, S D}$ with improved methods

Simulation parameters

Physical calculation for π, K, D, D_{s} [Desiderio, Frezzotti, Garofalo, Giusti, Hansen, Lubicz, Martinelli, Sachrejda, Sanfilippo, Simula,
Tantalo, PRD 2021, arXiv:2006.05358]

- 3 ETMC gauge ensembles with $N_{f}=2+1+1$
- twisted mass fermions in sea?
- 3 lattice spacings $a \in\{0.089,0.082,0.062\} f m$
- Lightest
- twisted boundary conditions to assign arbitrary $p_{\gamma}, p_{\text {Meson }}$

Physical calculation for $D_{s} \rightarrow \gamma \ell \nu_{\ell}$ for full kinematic range of E_{γ} [Frezzotti, Gagliardi, Lubicz, Martinelli, Mazzetti,
Sachrajda, Sanfilippo, Simula, Tantalo, PRD 2021, arXiv:2306.05904]

- 4 ETMC gauge ensembles with $N_{f}=2+1+1$
- twisted mass fermions
- 4 lattice spacings $a \in[0.058,0.09] \mathrm{fm}$
- physical pion mass
- twisted boundary conditions to assign arbitrary $p_{\gamma}, p_{D_{s}}$
- Osterwalder-Seiler fermions

[^0]: [Greljo, Salko, Smolkovic, Stangl, JHEP 2023 / arXiv:2212.10497]

