F Hautmann

TMDs from low to high energies and the parton branching method

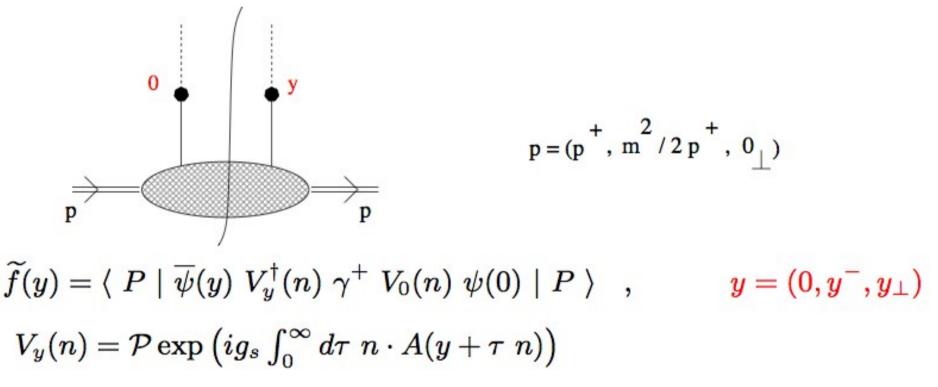
Theory Center Seminar, Jefferson Laboratory

October 2018

Overview

TRANSVERSE MOMENTUM DEPENDENT (TMD) PARTON DISTRIBUTION FUNCTIONS

• Parton correlation functions at non-lightlike distances:



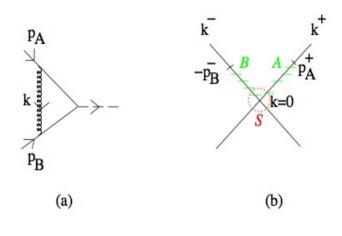
• TMD pdfs:

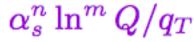
$$f(x,k_{\perp}) = \int \frac{dy^{-}}{2\pi} \frac{d^{d-2}y_{\perp}}{(2\pi)^{d-2}} e^{-ixp^{+}y^{-} + ik_{\perp} \cdot y_{\perp}} \tilde{f}(y)$$

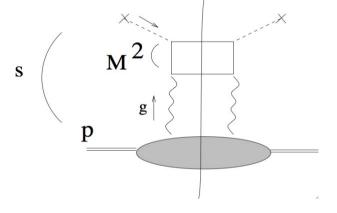
Evolution equations for TMD parton distribution functions

low q_T : $q_T \ll Q$

high \sqrt{s} : $\sqrt{s} \gg M$







 $(lpha_s \ln \sqrt{s}/M)^n$

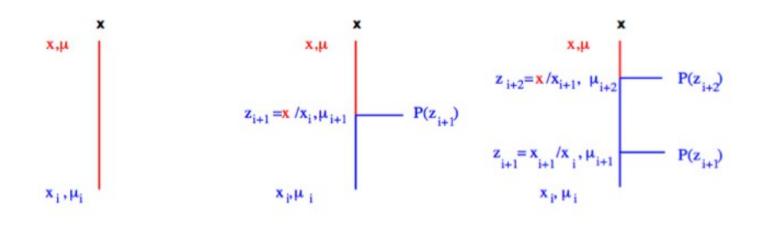
CSS evolution equation

CCFM evolution equation

R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

Parton Branching (PB) approach

Jung, Lelek, Radescu, Zlebcik & H, "Collinear and TMD quark and gluon densities from parton branching", JHEP 1801 (2018) 070



PB evolution equation motivated by

 applicability over large kinematic range from low to high transverse momenta

applicability to exclusive final states and Monte Carlo event generators

TMD distributions (unpolarized and polarized)

TABLE I

(Colour on-line) Quark TMD pdfs: columns represent quark polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips.

QUARKS	unpolarized	chiral	transverse
U	$f_{\rm i}$		h_1^{\perp}
L		(g_u)	h_{1L}^{\perp}
т	f_{1T}^{\perp}	g_{1T}	$(h_{ir})h_{ir}^{\perp}$

TABLE II

(Colour on-line) Gluon TMD pdfs: columns represent gluon polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips. Linearly polarized gluons represent a double spin-flip structure.

GLUONS	unpolarized	circular	linear
U	(f_1^g)		$h_1^{\perp g}$
L		(g_u^s)	$h_{1L}^{\perp g}$
т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{1T}^{g}, h_{1T}^{\perp g}$

R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

Outline of this talk

• TMDs at high \sqrt{s} and at low qT

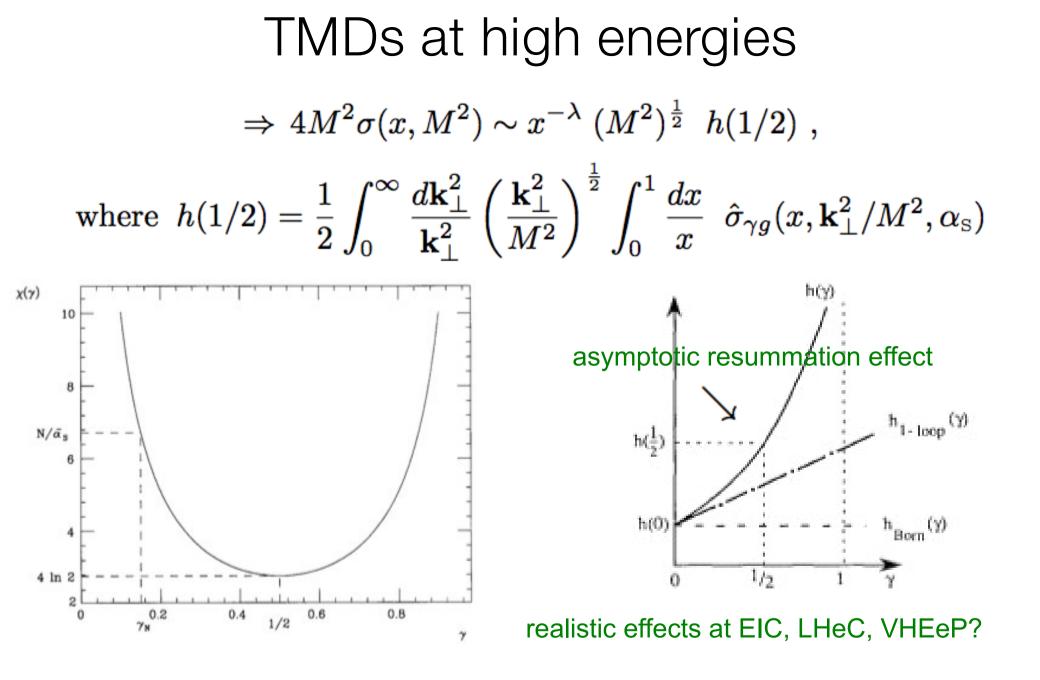
The parton branching (PB) method

New results and applications

I. INTRODUCTION TMDs at high energies Ex.: heavy flavor electroproduction for $s \gg M^2 \gg \Lambda_{\rm QCD}^2$ $\gamma + h \rightarrow Q + \bar{Q} + X$ $4M^2 \ \sigma(x,M^2) = \int d^2 \mathbf{k}_\perp \int_{-\infty}^1 rac{dz}{z} \ \hat{\sigma}_{\gamma g}(x/z,\mathbf{k}_\perp^2/M^2,lpha_{
m S}(M^2)) \ \mathcal{A}_{g/h}(z,\mathbf{k}_\perp)$ where TMD gluon distribution is given by Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution: $\lambda = 4 C_A \, rac{lpha_{
m S}}{\pi} \, \ln 2$ $\mathcal{A}_{g/h}(x,\mathbf{k}_{\perp}) \sim \frac{1}{2\pi} e^{-\lambda \ln x} \, (\mathbf{k}_{\perp}^2)^{\gamma-1}$

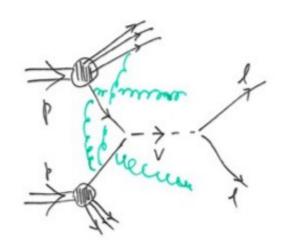
F Hautmann: JLab Theory Center, October 2018

7



- NB: incorporate sub-asymptotic, finite-x terms \rightarrow CCFM evolution
 - dense-medium modifications in nucleons and nuclei \rightarrow nonlinear evolution

TMDs for low qT



Ex.: Drell-Yan production qT spectra for Q >> qT

$$\frac{d\sigma}{d^2\mathbf{q}_T dQ^2 dy} = \sum_{i,j} \frac{\sigma^{(0)}}{s} H(\alpha_{\rm S}) \int \frac{d^2\mathbf{b}}{(2\pi)^2} e^{i\mathbf{q}_T \cdot \mathbf{b}} \mathcal{A}_i(x_1, \mathbf{b}, \mu, \zeta) \mathcal{A}_j(x_2, \mathbf{b}, \mu, \zeta) + \{\mathbf{q}_T - \text{finite}\} + \mathcal{O}\left(\frac{\Lambda_{\rm QCD}^2}{Q^2}\right)$$

where
$$\frac{\partial \ln \mathcal{A}}{\partial \ln \sqrt{\zeta}} = K(\mathbf{b}, \mu)$$

Collins-Soper-Sterman (CSS) evolution

and
$$\frac{d \ln A}{d \ln \mu} = \gamma_f(\alpha_s(\mu), \zeta/\mu^2)$$
, $\frac{dK}{d \ln \mu} = -\gamma_K(\alpha_s(\mu))$ RG evolution
cusp anomalous dimension

F Hautmann: JLab Theory Center, October 2018

 Soft Collinear Effective Theory (SCET) provides alternative approach leading to same results

TMDs for low qT



form factor

evolution

coefficients

From color-neutral to color-charged final states

KIKI KINI KINA HI

Color neutral:

f

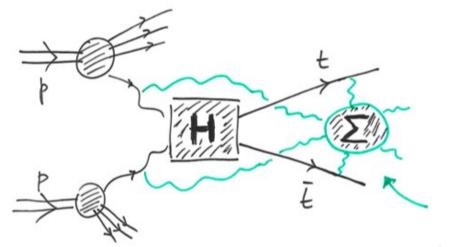
Color charged:

• New long-time correlations in color-charged case:

$$\left(\frac{d\sigma}{d^4q}\right)_{t\bar{t}} = \sum_{ija_1a_2} \int d^2\mathbf{b} \ e^{i\mathbf{q}_T\cdot\mathbf{b}} \ \int dz_1 \int dz_2 \ S(Q,\mathbf{b}) \ f_{a_1} \otimes [\operatorname{Tr}(H\Delta)C_1C_2]_{ija_1a_2} \otimes f_{a_2}$$

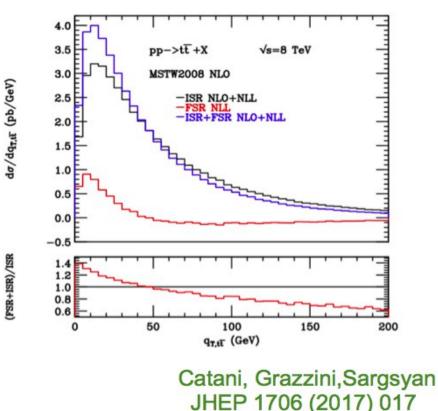
- Generate azimuthal correlations
- Observable for Δp_{\perp} high compared to $\Lambda_{\rm QCD}$?

Color correlations in jet and heavy-flavor production



 Initial state / final state soft-gluon correlations
 → new "color entanglement" effects?

 A recent quantitative estimate of the size of color correlations for the top quark pair spectrum at the LHC:



II. The Parton Branching (PB) method

MOTIVATION

- Provide evolution equation connected in a controllable way with DGLAP evolution of collinear parton distributions
- Applicable over broad kinematic range from low to high transverse momenta, for inclusive as well as non-inclusive observables

Implementable in Monte Carlo event generators

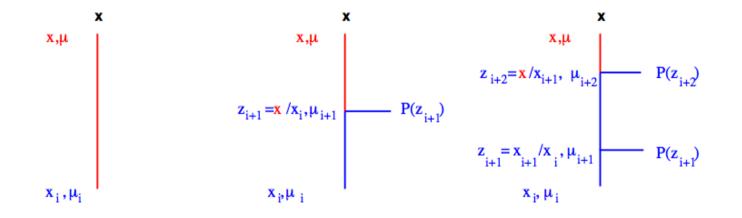
Parton Branching (PB) method: collinear PDFs

QCD evolution and soft-gluon resolution scale

[Jung, Lelek, Radescu, Zlebcik & H, PLB772 (2017) 446 + in progress]

$$\widetilde{f}_{a}(x,\mu^{2}) = \frac{S_{a}(\mu^{2})}{\widetilde{f}_{a}(x,\mu_{0}^{2})} + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{S_{a}(\mu^{2})}{S_{a}(\mu'^{2})} \int_{x}^{z_{M}} dz \ P_{ab}^{(R)}(\alpha_{s}(\mu'^{2}),z) \ \widetilde{f}_{b}(x/z,\mu'^{2})$$
where $S_{a}(z_{M},\mu^{2},\mu_{0}^{2}) = \exp\left(-\sum_{a} \int_{\mu^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\omega} \int_{x}^{z_{M}} dz \ z \ P_{ba}^{(R)}(\alpha_{s}(\mu'^{2}),z)\right)$

where
$$S_a(z_M, \mu^2, \mu_0^2) = \exp\left(-\sum_b \int_{\mu_0^2} \frac{1}{\mu'^2} \int_0^z dz \ z \ P_{ba}^{(s)}(\alpha_s(\mu'^2), z)\right)$$



▷ soft-gluon resolution parameter z_M separates resolvable and nonresolvable branchings ▷ no-branching probability S; real-emission probability $P^{(R)}$

• Equivalent to DGLAP evolution equation for $zM \rightarrow 1$

Non-resolvable emissions and unitarity method

• Introduce resolution scale z_M , where $1 - z_M \sim \mathcal{O}(\Lambda_{\rm QCD}/\mu)$.

• Classify singular behavior of splitting kernels $P_{ab}(z, \alpha_s)$ in non-resolvable region $1 > z > z_M$:

 $P_{ab}(lpha_{ ext{s}},z)=D_{ab}(lpha_{ ext{s}})\delta(1-z)+K_{ab}(lpha_{ ext{s}})\;rac{1}{(1-z)_+}+R_{ab}(lpha_{ ext{s}},z)$

where
$$\int_0^1 \frac{1}{(1-z)_+} \varphi(z) \, dz = \int_0^1 \frac{1}{1-z} \left[\varphi(z) - \varphi(1) \right] \, dz$$

and $R_{ab}(\alpha_{\rm S}, z)$ contains logarithmic and analytic contributions for $z \rightarrow 1$

• Expand plus-distributions in non-resolvable region and use sum rule $\sum_c \int_0^1 z \ P_{ca}(\alpha_s, z) \ dz = 0$ (for any *a*) to eliminate *D*-terms in favor of *K*- and *R*-terms

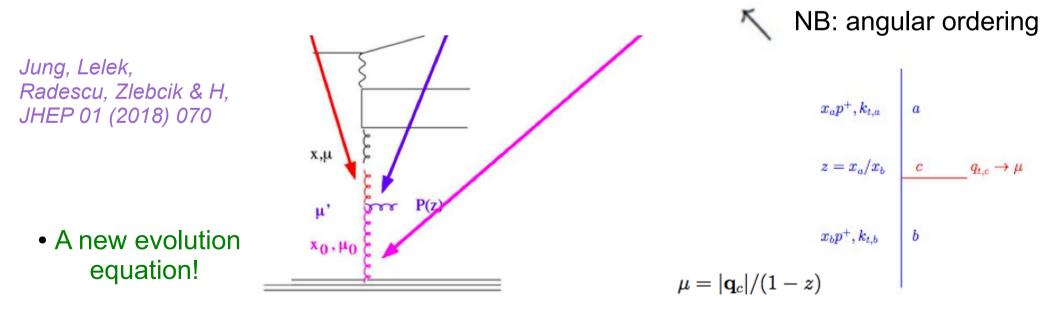
 \Rightarrow real-emission probabilities exponentiate into Sudakov form factors

Parton Branching (PB) method: TMD PDFs

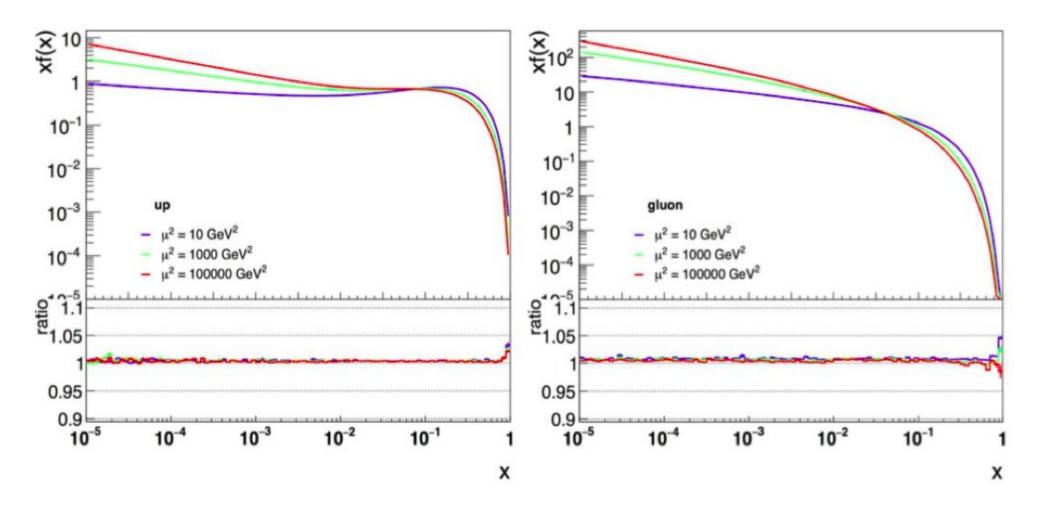
$$\begin{split} \widetilde{\mathcal{A}}_{a}(x,\mathbf{k},\mu^{2}) &= S_{a}(\mu^{2}) \ \widetilde{\mathcal{A}}_{a}(x,\mathbf{k},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mathbf{q}'}{\pi \mathbf{q}'^{2}} \ \frac{S_{a}(\mu^{2})}{S_{a}(\mathbf{q}'^{2})} \ \Theta(\mu^{2}-\mathbf{q}'^{2}) \ \Theta(\mathbf{q}'^{2}-\mu_{0}^{2}) \\ &\times \int_{x}^{z_{M}} dz \ P_{ab}^{(R)}(\alpha_{\mathrm{S}}(\mathbf{q}'^{2}),z) \ \widetilde{\mathcal{A}}_{b}(x/z,\mathbf{k}+(1-z)\mathbf{q}',\mathbf{q}'^{2}) \end{split}$$

Solve iteratively : $\widetilde{\mathcal{A}}_a^{(0)}(x,\mathbf{k},\mu^2) = S_a(\mu^2) \ \widetilde{\mathcal{A}}_a(x,\mathbf{k},\mu_0^2) \ ,$

$$egin{aligned} \widetilde{\mathcal{A}}_{a}^{(1)}(x,\mathbf{k},\mu^{2}) &= \sum_{b} \int rac{d^{2}\mathbf{q}'}{\pi\mathbf{q}'^{2}} \; \Theta(\mu^{2}-\mathbf{q}'^{2}) \; \Theta(\mathbf{q}'^{2}-\mu_{0}^{2}) \ & imes \; rac{S_{a}(\mu^{2})}{S_{a}(\mathbf{q}'^{2})} \int_{x}^{z_{M}} dz \; P_{ab}^{(R)}(lpha_{\mathrm{S}}(\mathbf{q}'^{2}),z) \; \widetilde{\mathcal{A}}_{b}(x/z,\mathbf{k}+(1-z)\mathbf{q}',\mu_{0}^{2}) \; S_{b}(\mathbf{q}'^{2}) \end{aligned}$$



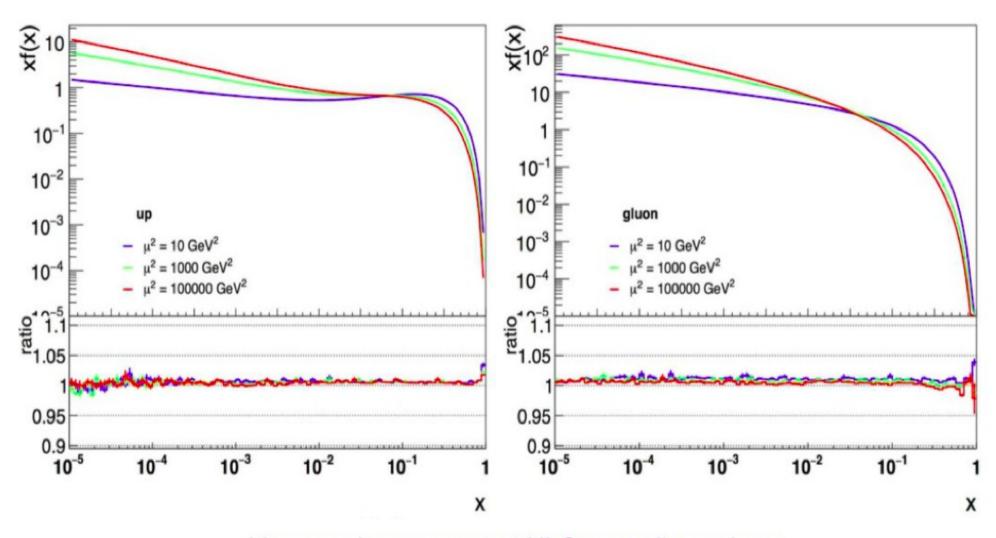
Validation of the method with semi-analytic result from QCDNUM at LO



Agreement to better than 1 % over several orders of magnitude in x and mu

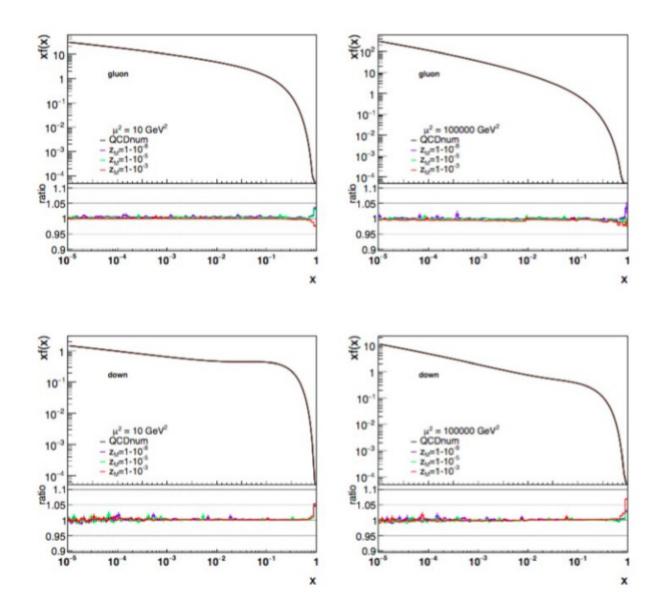
F Hautmann: JLab Theory Center, October 2018

Validation of the method with semi-analytic result from QCDNUM at NLO

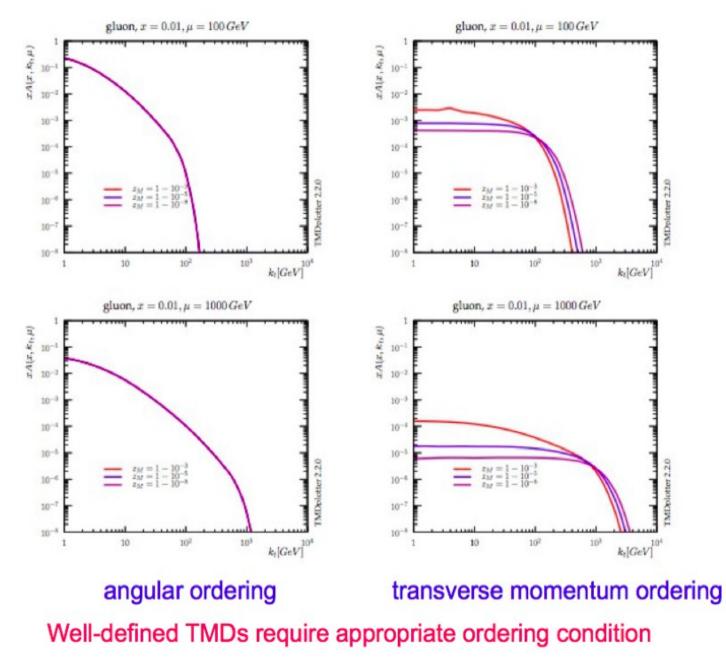


Very good agreement at NLO over all x and mu. NB: the same approach is designed to work at NNLO.

Stability with respect to resolution scale z_M



TMDs and soft gluon resolution effects



PB method in xFitter

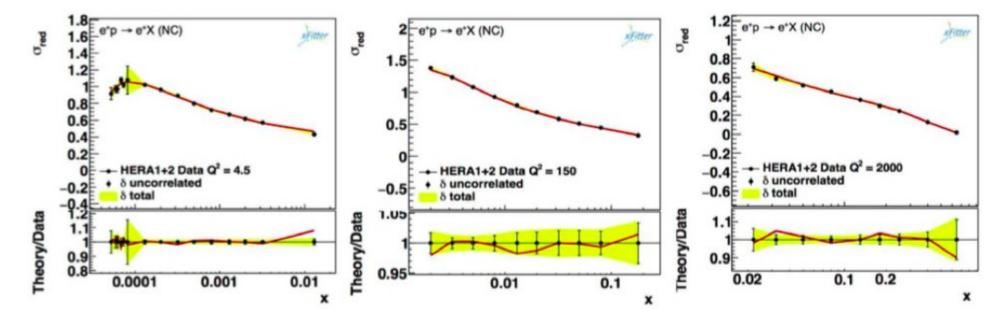
Determine starting distribution

A Bermudez et al, arXiv:1804.11152

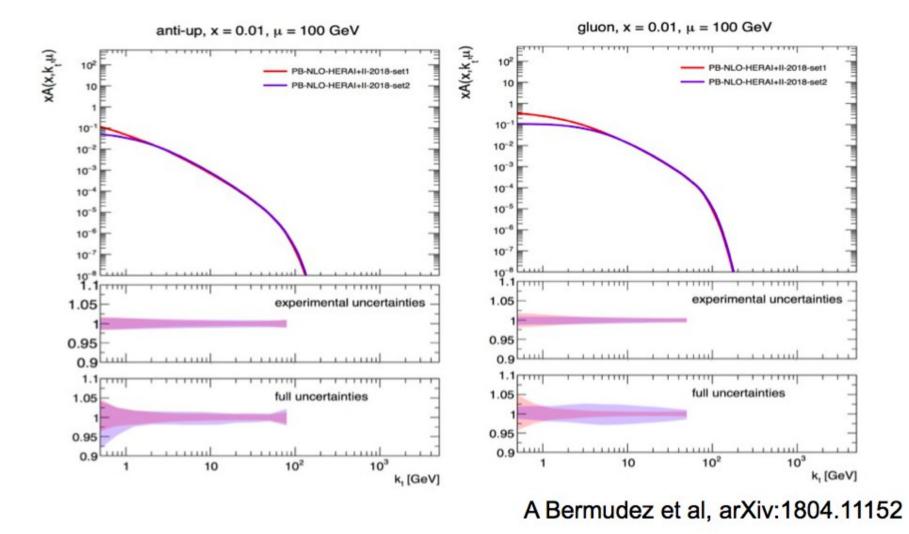
A. Lelek et al REF 2016

$$\begin{aligned} xf_a(x,\mu^2) &= x \int dx' \int dx'' \mathcal{A}_{0,b}(x') \tilde{\mathcal{A}}_a^b \left(x'',\mu^2\right) \delta(x'x''-x) \\ &= \int dx' \mathcal{A}_{0,b}(x') \cdot \frac{x}{x'} \; \tilde{\mathcal{A}}_a^b \left(\frac{x}{x'},\mu^2\right) \end{aligned}$$

• fit to HERA data (using xFitter) with $Q^2 \ge 3.5$ GeV² gives $\chi^2/ndf \sim 1.2$



TMD distributions from fits to precision HERA data



NLO determination of TMDs with uncertainties

Where to find TMDs? TMDIib and TMDplotter

- TMDlib proposed in 2014 as part of the REF Workshop and developed since
- A library of parameterizations and fits of TMDs (LHAPDF-style)

http://tmdlib.hepforge.org http://tmdplotter.desy.de

 Also contains collinear (integrated) pdfs Eur. Phys. J. C (2014) 74:3220 DOI 10.1140/epjc/s10052-014-3220-9 THE EUROPEAN PHYSICAL JOURNAL C

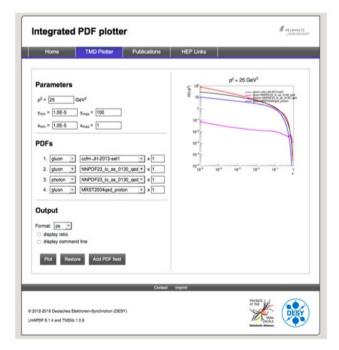
Special Article - Tools for Experiment and Theory

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

F. Hautmann^{1,2}, H. Jung^{3,4}, M. Krämer³, P. J. Mulders^{5,6}, E. R. Nocera⁷, T. C. Rogers^{8,9}, A. Signort^{5,6,a}

1 Rutherford Appleton Laboratory, Oxford, UK

- ² Department of Theoretical Physics, University of Oxford, Oxford, UK
- 3 DESY, Hamburg, Germany
- ⁴ University of Antwerp, Antwerp, Belgium
- ⁵ Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
- ⁶ Nikhef, Amsterdam, The Netherlands
- ⁷ Università degli Studi di Genova, INFN, Genoa, Italy
- ⁸ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, USA
- ⁹ Department of Physics, Southern Methodist University, Dallas, TX 75275, USA



Next REF Workshop: Cracow, 19-22 November 2018

https://indico.cern.ch/event/696311

- 7-10 November 2016 Antwerp (Belgium)
- 2-5 November 2015 DESY Hamburg (Germany)
- 8-11 December 2014 Antwerp (Belgium)

Scientiffic committee:

Elke Aschenauer	Daniel Boer	
Igor Cherednikov	Markus Diehl	
Didar Dobur	David Dudal	
Miguel García Ech	evarría	
Laurent Favart	Francesco Hautmann	
Hannes Jung	Fabio Maltoni	
Piet Mulders	Gunar Schnell	
Andrea Signori	Pierre Van Mechelen	

F Hautmann: JLab Theory Center, October 2018

Contact

krzysztof.kutak@ifj.edu.pl

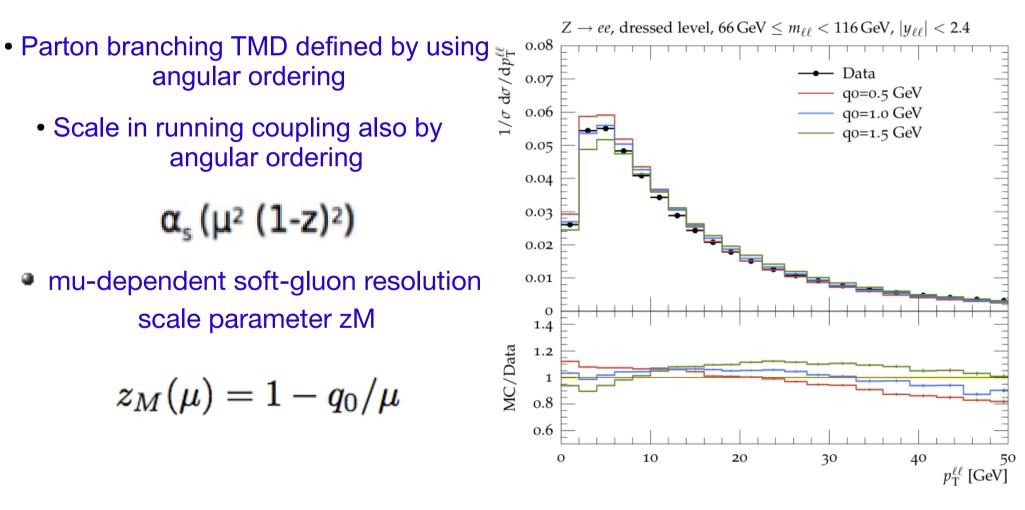
jolanta.mosurek@ifj.edu.pl

III. New results and applications

ONGOING WORK:

- Drell-Yan pT spectrum from convolution of two transverse momentum dependent distributions
- Comparison of parton branching results with analytic TMD resummation (Collins-Soper-Sterman method)
- First implementation for jets (using NLO matrix elements for color-charged final states)

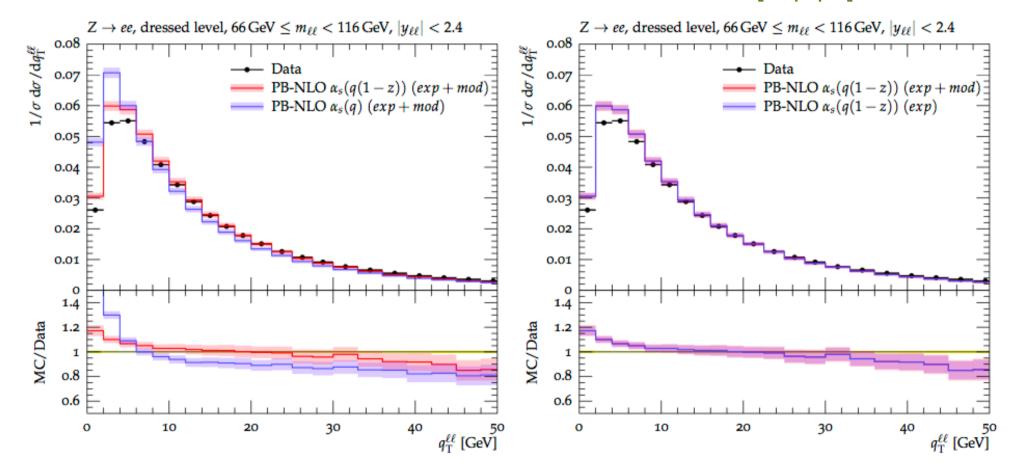
Application of PB method to Z-boson transverse momentum spectrum in Drell-Yan production



LHC Electroweak WG Meeting, CERN, June 2018

Z-boson transverse momentum spectrum: soft-gluon angular ordering effects

Zlebcik, Radescu, Lelek, Jung & H, JHEP 1801 (2018) 070; A Bermudez Martinez et al., arXiv:1804.11152 [hep-ph]



ATLAS data, EPJC 76 (2016) 291

F Hautmann: JLab Theory Center, October 2018

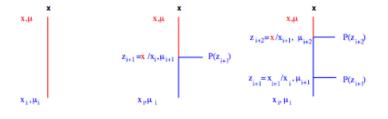
Comparison with CSS (Collins-Soper-Sterman) resummation

 \diamondsuit The resummed DY differential cross section is given by

$$\frac{d\sigma}{d^2\mathbf{q}dQ^2dy} = \sum_{q,\bar{q}} \frac{\sigma^{(0)}}{s} H(\alpha_{\rm S}) \int \frac{d^2\mathbf{b}}{(2\pi)^2} \ e^{i\mathbf{q}\cdot\mathbf{b}} \mathcal{A}_q(x_1,\mathbf{b},Q) \mathcal{A}_{\bar{q}}(x_2,\mathbf{b},Q) + \mathcal{O}\left(\frac{|\mathbf{q}|}{Q}\right) \quad \text{where}$$

$$\begin{aligned} \mathcal{A}_i(x, \mathbf{b}, Q) &= \exp\left\{\frac{1}{2} \int_{c_0/b^2}^{Q^2} \frac{d\mu'^2}{\mu'^2} \left[A_i(\alpha_{\mathrm{S}}(\mu'^2)) \ln\left(\frac{Q^2}{\mu'^2}\right) + B_i(\alpha_{\mathrm{S}}(\mu'^2))\right]\right\} G_i^{(\mathrm{NP})}(x, \mathbf{b}) \\ &\times \sum_j \int_x^1 \frac{dz}{z} C_{ij}\left(z, \alpha_{\mathrm{S}}\left(\frac{c_0}{\mathbf{b}^2}\right)\right) f_j\left(\frac{x}{z}, \frac{c_0}{\mathbf{b}^2}\right) \end{aligned}$$

and the coefficients H, A, B, C have power series expansions in α_S . \diamond The parton branching TMD is expressed in terms of real-emission $P^{(R)}$:



 \triangleright via momentum sum rules, use unitarity to relate $P^{(R)}$ to virtual emission \triangleright identify the coefficients in the two formulations, order by order in α_S , at LL, NLL, ...

Comparison with CSS (Collins-Soper-Sterman) resummation

More precisely:

▷ The parton branching TMD contains Sudakov form factor in terms of

$$P^{(R)}_{ab}(lpha_{ ext{ iny S}},z) = K_{ab}(lpha_{ ext{ iny S}}) \; rac{1}{1-z} + R_{ab}(lpha_{ ext{ iny S}},z) \; \; ext{where}$$

$$K_{ab}(lpha_{
m S}) = \delta_{ab}k_{a}(lpha_{
m S}), \ \ k_{a}(lpha_{
m S}) = \sum_{n=1}^{\infty} \left(rac{lpha_{
m S}}{2\pi}
ight)^{n}k_{a}^{(n-1)}, \ \ R_{ab}(lpha_{
m S},z) = \sum_{n=1}^{\infty} \left(rac{lpha_{
m S}}{2\pi}
ight)^{n}R_{ab}^{(n-1)}(z)$$

Via momentum sum rules, use unitarity to re-express this in terms of

$$P^{(V)} = P - P^{(R)}$$
, where

$$P_{ab}(lpha_{ ext{s}},z)=D_{ab}(lpha_{ ext{s}})\delta(1-z)+K_{ab}(lpha_{ ext{s}})\;rac{1}{(1-z)_+}+R_{ab}(lpha_{ ext{s}},z)$$

is full splitting function (at LO, NLO, etc.)

$$ext{with} \quad D_{ab}(lpha_{ ext{ iny S}}) = \delta_{ab} d_a(lpha_{ ext{ iny S}}) \;, \quad d_a(lpha_{ ext{ iny S}}) = \sum_{n=1}^\infty \left(rac{lpha_{ ext{ iny S}}}{2\pi}
ight)^n d_a^{(n-1)}$$

 \triangleright Identify $d_a(lpha_{
m S})$ and $k_a(lpha_{
m S})$ with resummation formula coefficients (LL, NLL, . .)

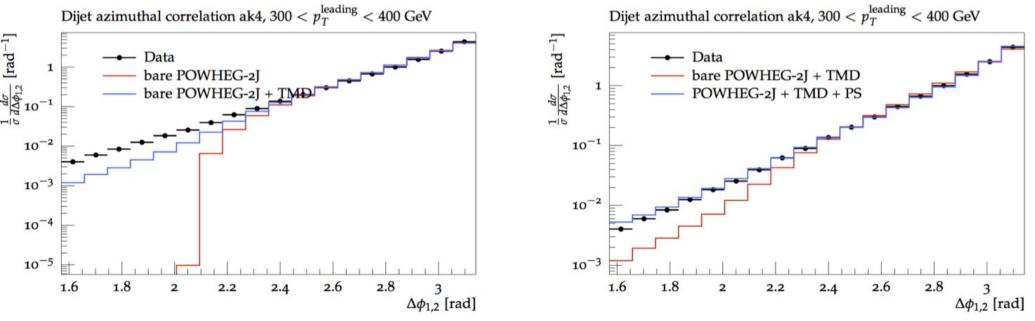
Comparison with CSS (Collins-Soper-Sterman) resummation

• $d_a(lpha_{\scriptscriptstyle \mathrm{S}})$ and $k_a(lpha_{\scriptscriptstyle \mathrm{S}})$ perturbative coefficients

$$\begin{aligned} \text{one} - \text{loop} &: \\ d_q^{(0)} &= \frac{3}{2} \, C_F \quad , \ k_q^{(0)} = 2 \, C_F \\ \text{two} - \text{loop} &: \\ d_q^{(1)} &= C_F^2 \left(\frac{3}{8} - \frac{\pi^2}{2} + 6 \, \zeta(3) \right) + C_F C_A \left(\frac{17}{24} + \frac{11\pi^2}{18} - 3 \, \zeta(3) \right) - C_F T_R N_f \left(\frac{1}{6} + \frac{2\pi^2}{9} \right) \,, \\ k_q^{(1)} &= 2 \, C_F \, \Gamma \,, \quad \text{where} \ \Gamma &= C_A \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - T_R N_f \frac{10}{9} \end{aligned}$$

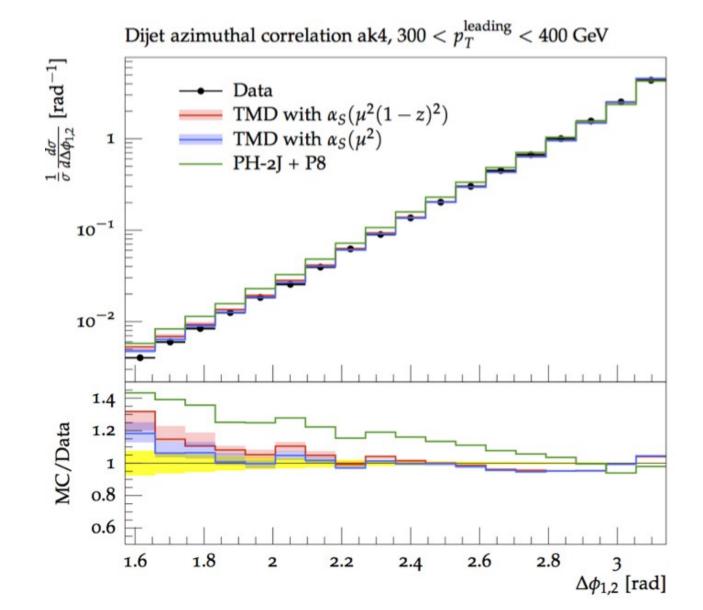
• The k and d coefficients of the PB formalism match, order by order, the A and B coefficients of the CSS formalism

Di-jets from PB method: towards NLO-matched parton-shower Monte Carlo generators with TMDs



- Events by NLO POWHEG 2 jets
- Parton branching TMD (with angular ordering)
- TMD parton shower

Di-jets from PB method: towards NLO-matched parton-shower Monte Carlo generators with TMDs



- Events by NLO
 POWHEG 2 jets
- Parton branching TMD (with angular ordering)
- TMD parton shower

Conclusions

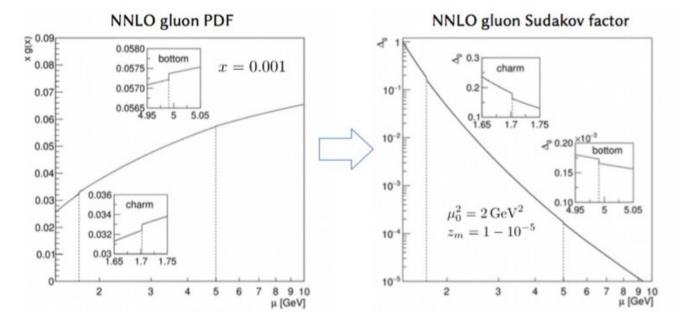
- PB method to take into account simultaneously soft-gluon emission at z → 1 and transverse momentum qT recoils in the parton branchings along the QCD cascade
- potentially relevant for calculations both in collinear factorization and in TMD factorization
 - \rightarrow cf. parton shower calculations and analytic resummation
- terms in powers of In (1 zM) can be related to large-x resummation? → relevant to near-threshold, rare processes to be investigated at high luminosity
- systematic studies of ordering effects and color coherence

 \rightarrow helpful to analyze long-time color correlations?

EXTRA SLIDES

PB method at NNLO

- In NNLO VFNS discontinuities both in α_S and PDFs
- These discontinuities ensure continuity of observables, e.g. ${\it F}_2$



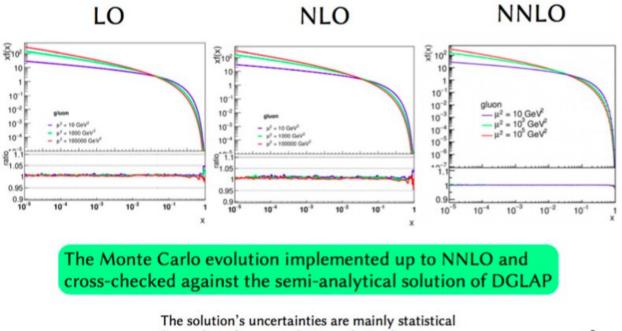
Discontinuities in the quark and gluon Sudakov factors

R. Zlebcik, talk at REF 2017, November 2017

Workshop REF2017, Universidad Complutense Madrid, 13-16 November 2017

PB method at NNLO

The Monte Carlo solution vs QCDNUM



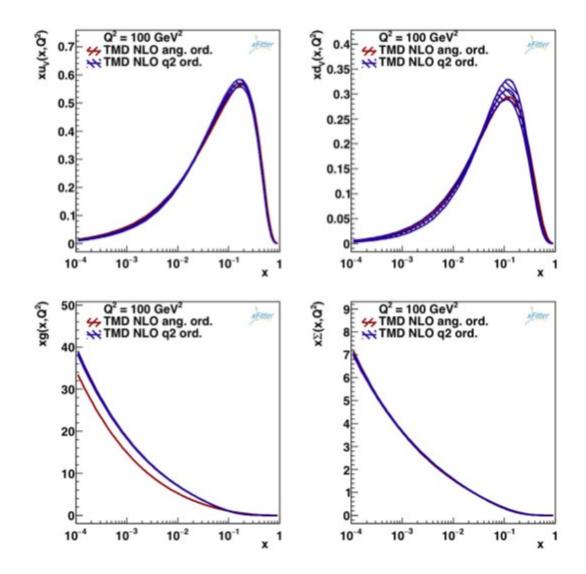
(~ number of generated MC evolutions)

8

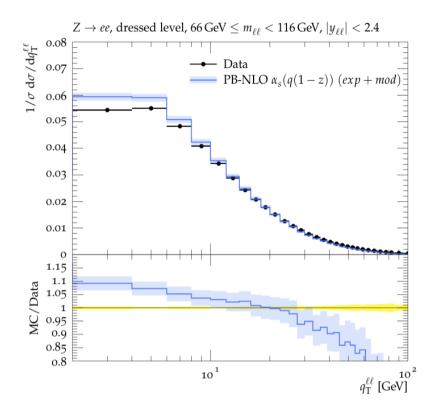
R. Zlebcik, talk at REF 2017, November 2017

Workshop REF2017, Universidad Complutense Madrid, 13-16 November 2017

Effects of coupling's scale and angular ordering in integrated parton distributions



Z-boson pT spectrum including TMD uncertainties



 Cf. predictions from fixed-order + resummed calculations Bizon et al., arXiv:1805.05916

