Exploring hadron structure with EFT-based methods

C. Weiss (JLab), JLab Theory Cake Seminar, 06-Feb-2019

• Hadron structure in QCD
 Operators and matrix elements

• Nucleon form factors $|t| \lesssim 1 \text{ GeV}^2$
 New method – dispersively improved χEFT
 Vector FFs and proton radius extraction
 Scalar FF and radius
 Extensions: Baryon resonances, 3π unitarity

• Transverse densities and GPDs
 Peripheral structure $b \sim 1/M_\pi$
 Light-front formulation of χEFT
 x-dependent distributions

Systematic methods:
Chiral effective field theory
Analytic amplitude methods
$1/N_c$ expansion of QCD
Hadron structure: Operators

- **Local operators**
 - $\bar{\psi} \gamma^\mu \psi$: vector elastic $eh/\mu h$ scattering, e^+e^- annihilation
 - $\bar{\psi} \gamma^\mu \gamma^5 \psi$: axial weak interactions, PV, νh scattering
 - $\bar{\psi} \sigma^{\mu\nu} \psi$: tensor BSM processes
 - $m\bar{\psi}\psi$, $F_{\mu\nu}^2$: scalar quark mass dep, trace anomaly, τ decays
 - EM tensor: gravity; mass, momentum, spin, forces

- **Non-local operators**
 - $\bar{\psi}(0)\ldots\psi(z)$, $z^2 = 0$, light-cone operators twist-2, 3...

 Factorization of high-momentum transfer processes:
 - DIS, inclusive, exclusive, semi-inclusive

 Scale μ^2, dependence $\mu (d/d\mu)$ from RNG equation

- **Hadronic matrix elements**
 - $\langle h'|\mathcal{O}|h \rangle$: transition, expectation value
 - $\langle hh'|\mathcal{O}|0 \rangle$: creation/annihilation, incl. multihadron states, resonances
Hadron structure: Methods

- **Chiral effective field theory**

 Describes dynamics at \(k_\pi \sim M_\pi \ll \Lambda_\chi \sim 1 \text{ GeV} \)

 Constructed/solved in expansion in \(\{k_\pi, M_\pi\}/\Lambda_\chi \)

 Includes baryons \(N, \Delta \) as dynamical fields

 Permits matching with QCD operators

- **Analytic amplitude methods**

 Dispersion relations \(\text{Amp} = \int \text{Singularities} \)

 Unitarity, \(N/D \) method

- **\(1/N_c \) expansion of QCD**

 Parametric classification of meson/baryon matrix elements, spin-flavor components

Systematic methods: Parametric expansion, defined accuracy, uncertainty estimates

Reduce complexity, relate structures, provide insight

Predictive, but require dynamical input!
Nucleon FFs: Electromagnetic FFs

- Current matrix element parametrized by invariant form factors
 \[\langle N' | J_\mu | N \rangle \rightarrow F_1(t), F_2(t) \]
 Dirac/Pauli

 Much interest in low-|t| FFs!

- Next-gen elastic scattering experiments
 - Mainz MAMI ep
 - JLab PRad ep down to \(Q^2 \sim 10^{-4} \text{ GeV}^2 \)
 - PSI MUSE \(e^+p/e^-p/\mu^+p/\mu^-p \)

- Proton radius puzzle
 Discrepancies between charge radius from electronic hydrogen, muonic hydrogen electron scattering
 Reviews Pohl 2013, Carlson 2015, Miller 2018

- Transverse densities ⇔ GPDs
Nucleon FFs: Dispersive representation

- **Dispersive representation**

\[
F_i(t) = \int_{t_{thr}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} F_i(t')}{t' - t - i0}
\]

Expresses analytic structure of \(F_i(t) \)

- **Spectral functions** \(\text{Im} F_i(t) \)

Current \(\rightarrow \) hadronic states \(\rightarrow N \bar{N} \)

Processes in unphysical region \(t < 4M_N^2 \)

Spectral functions to be provided by theory
Frazer, Fulco 1960; Höhler et al 1975+

- \(\pi \pi \) cut — can we use \(\chi \)EFT?
Gasser, Sainio, Svarc 1988; Bernard, Kaiser, Meissner 1996;
Becher, Leutwyler 1999; Kubis, Meissner 2003; Kaiser 03...

Isovector: \(\pi \pi \) (incl. \(\rho \)), \(4\pi \), \(K\bar{K} \), ...

Isoscalar: \(3\pi \) (incl. \(\omega \)), \(K\bar{K} \) (incl. \(\phi \)), ...
Nucleon FFs: Spectral functions on $\pi\pi$ cut

\[\text{Im} F_i(t) = \frac{k_{cm}^3}{\sqrt{t}} \Gamma_i(t) F_\pi^*(t) = \frac{k_{cm}^3}{\sqrt{t}} \frac{\Gamma_i(t)}{F_\pi(t)} |F_\pi(t)|^2 \]

\(\chi\text{EFT} \) \hspace{1cm} \text{Data}

- Elastic unitarity relation
 \(F_\pi(t) \) timelike pion FF, \(\Gamma_i(t) \) partial-wave amplitude $\pi\pi \rightarrow N\bar{N}$
 Amplitudes have same phase from $\pi\pi$ rescattering — Watson’s theorem

- Factorized representation (N/D method)
 \(\Gamma_i/F_\pi \) free of $\pi\pi$ rescattering
 $|F_\pi|^2$ includes $\pi\pi$ rescattering, ρ resonance
 \(\rightarrow \) calculate in \(\chi\text{EFT} \), well convergent
 \(\rightarrow \) take from e^+e^- data, LQCD

- New χEFT-based approach
 Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017);
 Similar method: Granados, Leupold, Perotti 2017
Nucleon FFs: Chiral EFT

\[\Gamma_i = N \times \Delta + \text{N2LO} \]

\[F = \text{N2LO} \]

- Relativistic \(\chi \)EFT
 - Expansion in \(\{ M_\pi, k_\pi \} / \Lambda_\chi \)
 - Include \(\Delta \) isobar

- Calculation of \(\Gamma_i(t)/F_\pi(t) \)
 - LO: Born terms + Weinberg-Tomozawa
 - NLO: Contact term in \(\Gamma_i(t) \)
 - N2LO: Contact term and pion loops
 - Good convergence

- Pion timelike FF \(|F_\pi(t)|^2 \)
 - Measured accurately in \(e^+e^- \rightarrow \pi^+\pi^- \)
• Spectral functions on $\pi\pi$ cut

 Include ρ resonance through $|F_\pi(t)|^2$

 Good agreement with Roy-Steiner analysis
 Hoferichter et al 2017

• Qualitative improvement compared to traditional χEFT

 $\pi\pi$ rescattering effects included
Nucleon FFs: Spacelike FF predictions

\[G_i(t) = \int_{4M_R^2}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} G_i(t')}{t' - t - i0} \]

- Form factors evaluated using DR
 \(\pi \pi \) isovector spectral function calculated in DI\(\chi \)EFT
 High-mass states described by effective pole, strength fixed by sum rules (charges, radii)

- Excellent description of data up to \(|t| \sim 1 \text{ GeV}^2\)
 Not fit, but dynamical prediction. Theoretical uncertainty estimates

Alarcon, Weiss, PLB 784, 373 (2018)
Uncertainty bands: PDG range of nucleon radii
Nucleon FFs: Proton radius extraction

- Proton radius from electron scattering

\[Q^2 = t \]

Data at \(Q^2 > 0 \) ↔ Slope at \(Q^2 = 0 \)

Several methods, extensive literature
Bernauer et al 10+, Lee et al 15, Griffioen et al 16, Higinbotham et al 16, Horbatsch et al 17. Review Yan et al 18

- Analyticity implies correlations

Use data at “larger” \(Q^2 \sim \) few 0.1 GeV\(^2\) to constrain slope at \(Q^2 = 0 \)

Complement “extrapolation” methods

- DI\(\chi\)EFT-based extraction

Used parametrization w. LECs ↔ radii

Obtained \(r_p = 0.844(7) \) fm

Quantified thy and exp uncertainties

Alarcon, Higinbotham, Weiss, Ye, arXiv:1809.06373
Global FF fit adapted from Ye et al 2017
Form factor derivatives from DR

\[
\frac{d^n G^V_i(t)}{dt^n} \bigg|_{t=0} = \int_{4M^2_{\pi}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} G^V_i(t')}{t'^{n+1}}
\]

Two dynamical scales

- \(4M^2_{\pi}\) two-pion threshold
- \(M^2_{\rho}\) maximum of spectral function

Relative weight depends on \(n\)

Unnatural size of higher derivatives

Model-independent prediction

Could be tested in polynomial fits

JLab PRad first study: Yan et al 18

Alarcon, Weiss, PRC 97, 055203 (2018)
Nucleon FFs: Scalar FF

- Scalar QCD operator
 \[O_\sigma = \hat{m} \bar{\psi} \psi \]
 scale-independent
 \[\langle N' | O_\sigma | N \rangle \rightarrow \sigma(t) \]
 scalar nucleon FF

- Scalar nucleon FF from DIχEFT
 \[\text{Im } \sigma(t) \text{ from unitarity + ChEFT + } |\sigma_\pi(t)|^2 \]
 \[\sigma_\pi(t) \text{ from empirical dispersion analysis} \]
 Colangelo et al 04; Celis, Cirigliano, Passemard 14

\[\sigma(t) = \sigma(0) + \frac{t}{\pi} \int_{4M_\pi^2}^{\infty} dt' \frac{\text{Im } \sigma(t')}{t'(t' - t)} \]

- Scalar nucleon radius predicted
 \[\langle r^2 \rangle_\sigma = 1.03 - 1.13 \text{ fm}^2 \]
 [with \(\sigma(0) = 59 \text{ MeV} \)]
 \[\gg \langle r^2 \rangle_1 \text{ vector radius} \]
Nucleon FFs: Pion timelike FF from correlator

- DIχEFT requires only modulus $|\sigma_\pi(t)|^2$, not complex $\sigma_\pi(t)$

- Modulus can be extracted from vacuum correlator

$$\Pi_\sigma(t) \equiv i \int d^4x \ e^{iqx} \langle 0 | T O_\sigma(x) O_\sigma(0) | 0 \rangle, \quad t \equiv q^2$$

$$\text{Im} \ \Pi_\sigma(t) = \frac{k_{cm}}{8\pi \sqrt{t}} |\sigma_\pi(t)|^2 + \ldots$$

$$\langle 0 | T O_\sigma(x) O_\sigma(0) | 0 \rangle \sim \int_{4M_\pi^2}^{\infty} dt \ \frac{\sqrt{t} K_1(\sqrt{t}|x|) \text{Im} \Pi_\sigma(t)}{4\pi^2 |x|}$$

Pion timelike FF governs asymptotic behavior of correlator at large Euclidean distances

- Possible combination DIχEFT ↔ Euclidean methods, LQCD

Alt approach: Timelike pion FF from Lüscher method. H. Meyer 2011
Nucleon FFs: Applications and extensions

• Nucleon FFs of other QCD operators

 Spin-1 tensor operator

 Spin-2 energy-momentum tensor:
 Mass, momentum, spin, forces (D-term)

• Nucleon FFs with 3π cut

 Isoscalar-vector FF, isovector-axial FF

 Use methods of 3-body unitarity, presently being developed for amplitude analysis and LQCD

 Szczepaniak et al, Jackura, Pilloni, Döring et al

• Resonance transition FFs, e.g. $N \rightarrow \Delta$

 S-matrix theory: Stable particle transition ME $\langle \pi N | O | N \rangle$,
 pole at $s_{\pi N} = M^2_{\Delta}$ complex, residue factorizes

 Can be implemented in χEFT

 LQCD results for Δ FFs

 Alexandrou et al 08; Aubin, Orginos, Pascalutsa, Vanderhaeghen 08
Nucleon FFs: 1/N expansion of QCD

- Study scaling behavior of non-perturbative QCD quantities with N_c:
 Meson and baryon masses, current matrix elements, hadronic couplings, ...

 'tHooft 73, Witten 79

 N_c scaling can be established on general grounds

 Parametric classification, hierarchy of structures, qualitative insight

 Very successful phenomenology

 $N_c \to \infty$ corresponds to semiclassical limit of QCD

- Relations between N and Δ

 \[M_N, M_\Delta = O(N_c), \quad M_\Delta - M_N = O(N_c^{-1}) \]

 N, Δ almost degenerate

 \[g_{\pi NN} = \frac{3}{2} g_{\pi NN} \]

 Pion couplings simply related

 \[\langle B' | J^\mu | B \rangle = \text{common function} \]

 N and Δ current MEs related

- χEFT results have correct N_c-scaling if Δ isobar included as dynamical DoF

 Cohen, Broniowski 90’s, Alarcon, Weiss 2018; Strikman CW 2004/2010; Granados, CW 2013+

 EFT with combined chiral and $1/N_c$ expansion: Goity, Calle Cordon, Fernando
Transverse densities: Concepts

- **Transverse densities**

\[F_{1,2}(t = -\Delta^2_T) = \int d^2b \ e^{i\Delta T^ b} \rho_{1,2}(b) \]

Transverse charge/magnetization density

- **Structure at fixed light-front time** \(x^+ = x^0 + x^3 \)

Frame-independent densities

Spatial representation appropriate for relativistic systems

- **Connection with GPDs/QCD**

\[\rho_1(b) = \sum_q e_q \int_0^1 dx \ [q - \bar{q}](x, b) \]

\[\tilde{\rho}_2(b) \] spin-dep distortion
Transverse densities: Chiral periphery

• Peripheral densities \(b = \mathcal{O}(M_\pi^{-1}) \):
 - Governed by chiral dynamics, model-independent
 - Calculable using \(\chi \)EFT + dispersion theory

• Interest for low-energy structure
 - Transverse distance as parameter
 - Proper definition of mesonic component
 - Space-time picture of chiral dynamics

• Interest for high-energy processes
 - Peripheral quark/gluon structure, GPDs
 - Peripheral hard processes: JLab12, EIC, RHIC/LHC

\(\rho_{1,2}(b) \)

chiral component

\(b \sim 1/M_\pi \)

Strikman, Weiss 2004/2010+
Transverse densities: Dispersive representation

\[\rho(b) = \int_{4M_i^2}^{\infty} \frac{dt}{2\pi} K_0(\sqrt{tb}) \frac{\text{Im} F(t)}{\pi} \]

\[K_0 \sim e^{-b\sqrt{t}} \] exponential suppression of large \(t \)

Distance \(b \) selects masses \(\sqrt{t} \sim 1/b \): Filter

- Dispersive representation

- Peripheral densities from \(\pi\pi \) cut

Calculated with DI\(\chi \)EFT spectral functions

Describe empirical densities at \(b \gtrsim 1 \) fm

- Asymptotic behavior

\[\rho_V^1, \tilde{\rho}_V^2(b) = e^{-2M_\pi b} \times \mathcal{F}(M_N, M_\pi; b) \]

Rich structure, relation \(\rho_V^1 \leftrightarrow \tilde{\rho}_V^2 \)

Granados, Weiss JHEP 1401, 092 (2014)
Transverse densities: Light-front formulation

\[N\pi \quad x^+ \text{ time } \rightarrow \quad N \]

- Evolution in LF time \(x^+ = x^0 + x^3 \)

- Wave function of chiral \(\pi N \) system

 Describes transition \(N \rightarrow N\pi \) in \(\chi \)EFT. Universal, frame-independent also in \(\bar{u} - \bar{d} \) etc.

\[
\psi_{L=0,1}^{\pi N}(y, r_T) = \frac{\langle \pi N | \mathcal{L}_\chi | N \rangle}{\mathcal{M}_{\pi N}^2 - \mathcal{M}_N^2}
\]

invariant mass denominator

- Densities as wave function overlap

 Inequality \(|\rho_2^V| < \rho_1^V \)

 Contact terms \(\delta(y) \) represent high-mass intermed states; coefficient \((1 - g_A^2) \)

 Equivalent to invariant formulation

Granados, CW 13. See also Ji, Melnitchouk et al. 09+
Transverse densities: Mechanical picture

- χEFT process as time sequence
 Rest frame, nucleon polarized in y–direction
 Bare N fluctuates into πN system via χEFT interaction
 Peripheral densities result from J^+ current carried by orbiting pion

- Explains peripheral densities
 $\rho_1, \tilde{\rho}_2 = \langle J^+ \rangle_{\text{right}} \pm \langle J^+ \rangle_{\text{left}}$
 $\langle J^+ \rangle_{\text{left}} \gg \langle J^+ \rangle_{\text{right}}$ large asymmetry
 Pion motion relativistic $k_\pi \sim M_\pi$

- Quantitative picture based on χEFT
 Extended to Δ, EM tensor FFs
Transverse densities: \(x \) dependence

- Transverse spatial distribution (GPD)
 \[f(x, b) \]
 longitudinal momentum
 transverse position

- Chiral component
 \[b \sim M_\pi^{-1} \]
 transverse distance
 \[x \sim M_\pi / M_N \]
 mom fraction of soft pion

- Calculable model-independently
 Pion distribution in nucleon from \(\chi \)EFT
 Quark/gluon distn in pion from measurements

- Observables and measurements
 \(t \)-slope of hard exclusive processes \(x \ll 0.1 \)
 Pion knockout in peripheral processes at EIC

Strikman, Weiss, PRD 69, 054012 (2004); PRD 80, 114029 (2009)
Summary

• Systematic methods for hadron structure in QCD:
 Chiral EFT, analytic amplitude methods, $1/N_c$ expansion

• DIχEFT new method for calculating $\pi\pi$ spectral functions of nucleon FFs
 Includes $\pi\pi$ rescattering in t-channel through unitarity + N/D + timelike pion FF
 Overcomes main limitation of traditional χEFT

• Numerous applications and extensions
 Electromagnetic FFs, peripheral transverse densities,
 Low-Q^2 ep scattering analysis, proton radius extraction
 Scalar FF and radius
 Energy-momentum tensor, other QCD operators, 3π cut, resonance FFs

• Chiral dynamics in peripheral partonic structure
 Transverse densities — mechanical picture, theoretical insight
 x-dependent distributions — experimental probes