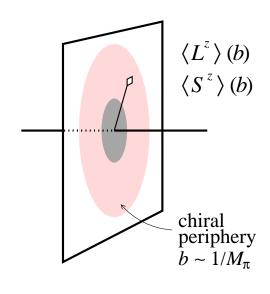
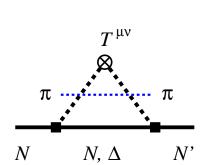
Partonic angular momentum in the nucleon's chiral periphery

C. Weiss (JLab) [E-mail], Complutense University, Madrid, 19-Jul-2019





Granados, CW, arXiv:1905.02742

• Angular momentum in QCD

Spin and orbital AM operators

Energy-momentum tensor and form factors

Light-front AM densities

Angular momentum in chiral periphery

Transverse densities at $b \sim 1/M_\pi$

Dispersive representation and $\chi {\sf EFT}$ calculation

Spin and orbital AM in chiral periphery

Mechanical picture

Connections and extensions

Electromagnetic densities

 $\pi\pi$ rescattering through unitarity with J. M. Alarcon

AM in QCD: Objectives

Composition of nucleon spin from quark and gluon spin and orbital angular momentum

Local densities of angular momenta in doop inelastic processes.

Measurement of angular momenta in deep-inelastic processes

Calculations using nonperturbative methods: EFT, LQCD ←

Challenges

Gauge invariance: Redundant DOF, equivalence classes, different form of operators

Non-uniqueness of EM tensor: Terms conserved without equations of motion, improvement

Interactions: Partonic operator beyond twist-2

Rotational invariance: Not manifest in light-front quantization \leftrightarrow high-energy processes

Measurement vs. interpretation: May favor/require different choice of operators

No attempt to review history of subject here. For review see Leader, Lorcé Phys. Rept. **541** (2014) 163 2014 Some important works: Jaffe, Manohar 1990; Ji 1996; Polyakov 2003; Bakker, Leader, Trueman 2004; Burkardt 2005; Chen, Lu, Sun, Wang, Goldman 2008; Wakamatsu 2010; Hatta 2011; Lorce, Pasquini 2011; Lorce 2013; Leader; Lorcé 2014

AM in QCD: Operators

ullet Invariance of action o conserved local currents o global charges

Space-time translations \to EM tensor $T^{\mu\nu}(x)$ \to total mom $P^i=\int d^3x\, T^{0i}(x)$

Rotations \to AM tensor $J^{\mu\alpha\beta}(x)$ \to total AM $J^i=\frac{1}{2}\epsilon^{ijk}\int d^3x\,J^{0jk}(x)$

Angular momentum tensor

Lorcé, Mantovani, Pasquini 2017

$$J^{\mu\alpha\beta}=S_q^{\mu\alpha\beta}+L_q^{\mu\alpha\beta}+J_g^{\mu\alpha\beta}$$
 total AM, "kinetic" definition
$$S_q^{\mu\alpha\beta}=\frac{1}{2}\epsilon^{\mu\alpha\beta\gamma}\sum_f \bar{\psi}_f\gamma_\gamma\gamma^5\psi_f$$
 quark spin, cf. axial current

$$L_q^{\mu\alpha\beta} = x^{\alpha}T_q^{\mu\beta} - x^{\beta}T_q^{\mu\alpha}$$
 quark orbital AM

$$J_g^{\mu\alpha\beta} = x^{\alpha}T_g^{\mu\beta} - x^{\beta}T_g^{\mu\alpha}$$
 gluon total AM

Gauge-invariant local operators

Individual terms scale-dependent, total scale-independent

Gluon AM cannot be split in spin and orbital in gauge-invariant manner

 $T_q^{\mu
u}$ not symmetric in kinetic definition; alt definition with Belinfante-improved symmetric $T_q^{\mu
u}$ and no explicit quark spin

Lorcé, Leader 2014; Lorcé 2015

AM in QCD: EM tensor form factors

$$\langle N'|T^{\mu\nu}|N\rangle = \bar{u}_2 \left[\gamma^{\{\mu}p^{\nu\}}A - \frac{p^{\{\mu}\sigma^{\nu\}\alpha}\Delta_{\alpha}}{2M_N}B + \frac{\Delta^{\mu}\Delta^{\nu} - \Delta^2g^{\mu\nu}}{M_N}C \right] - \frac{p^{[\mu}\sigma^{\nu]\alpha}\Delta_{\alpha}}{2M_N}D + M_Ng^{\mu\nu}\tilde{C} u_1,$$

Nucleon matrix element of EM tensor

Bakker, Leader, Trueman 04

A(t), B(t)... invariant functions of $t \equiv \Delta^2$, cf. vector/axial form factors

 $A=A_q+A_q$, individually scale-dependent, total scale-independent

Sum rules A(0) = 1, B(0) = 0

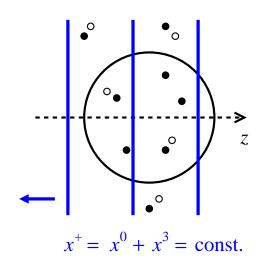
Relation to GPDs

$$[A_q + B_q](t) = \int_{-1}^1 dx \, x \, [H_q + E_q](x, \xi, t)$$
 second moment of GPDs

Ji 96

$$C_q(t) = \int_{-1}^1 d\alpha \, \alpha \, D_q(\alpha, t)$$
 normalization of D-term

Polyakov, CW 99; Polyakov et al. 2000



Soper 1976, Burkardt 2000, Miller 2007

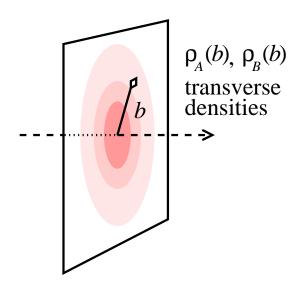
Structure at fixed LF time $x^+ = x^0 + x^3$

Densities boost-invariant, frame-independent

Separate hadron structure ↔ vacuum fluctuations

Dynamical models: LF quantization, wave function

Connection with parton picture, QCD operators



Transverse densities

$$A(t=-{m \Delta}_T^2) \,=\, \int d^2b\, e^{i{m \Delta}_T b}\,
ho_A(b)$$
 [same B,D]

Density of momentum etc. at transverse position $oldsymbol{b}$

$$A(0) = \int d^2b \,
ho_A(b)$$
 total momentum

AM in QCD: AM transverse densities

Transverse density of orbital AM in LF quantization

$$\langle {m T}^{+T}
angle ({m \Delta}_T) \equiv \langle p^+, {m \Delta}_T/2, \sigma | T^{+T} | p^+, -{m \Delta}_T/2, \sigma
angle \qquad {
m matrix element, } \sigma \; {
m LF \; helicity}$$
 ${m T}^{+T}({m b}) \equiv \int rac{d^2 {m \Delta}_T}{(2\pi)^2} \, e^{-i{m \Delta}_T \cdot {m b}} \; \langle {m T}^{+T}
angle ({m \Delta}_T) \qquad \qquad T^{+T} \; {
m transverse \; density}$ $\langle L^z
angle (b) \equiv [{m b} imes {m T}^{+T}({m b})]^z / (2p^+) \qquad {
m orbital \; AM \; density}$ $= -rac{\sigma}{2} \left(b \, rac{d}{db}
ight) [
ho_A +
ho_B +
ho_D] (b) \qquad {
m expressed \; through \; EM \; form \; factors}$

Adhikari, Burkardt 2016; Lorcé, Mantovani, Pasquini 2017; Granados, CW 2019

• Transverse density of quark spin

$$\langle S^z \rangle(b) \equiv \sigma \ \rho_S(b)$$
 ρ_S transverse density of nucleon axial FF $G_A(t)$

AM sum rule

$$\int d^2b \left[\langle S^z \rangle + \langle L^z \rangle \right](b) = \sigma = S^z(\text{rest rame}) = \pm 1/2.$$

AM in QCD: AM transverse densities II

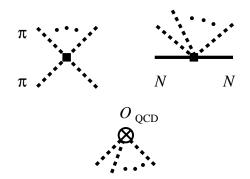
• "Dual role" of AM transverse densities $\langle L^z \rangle(b), \langle S^z \rangle(b)$

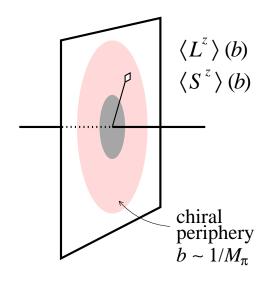
Calculated through the invariant form factors A, B, D(t) and $G_A(t)$ without reference to LF quantization, using a variety of methods: Chiral EFT, dispersion theory, Euclidean correlators and LQCD

Interpreted in context of LF quantization: Mechanical picture, partonic interpretation

"New quantities" for nucleon structure studies!

Chiral periphery: Effective dynamics





Large-distance dynamics emerging from QCD

Spontaneous breaking of chiral symmetry

Pion as Goldstone boson, almost massless $M_{\pi} \ll \Lambda_{\chi}$, weakly coupled for $p_{\pi} = \mathcal{O}(M_{\pi})$, form of interactions determined by underlying chiral symmetry

Dynamics constructed and solved using EFT methods Gasser, Leutwyler 1983; Weinberg 1990

Coupling to QCD operators

Peripheral transverse densities

Use distance as parameter $b = \mathcal{O}(M_{\pi}^{-1})$

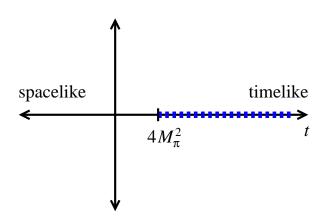
Calculate densities in χEFT : systematic, model-indep., actual large-distance dynamics of QCD

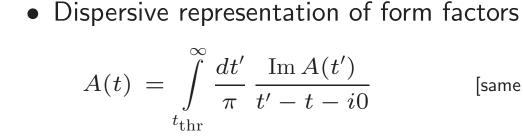
Mechanical picture, new insight

Method developed for electromagnetic densities Granados, Weiss JHEP 1401, 092 (2014), JHEP 1507, 170 (2015), JHEP 1606 (2016) 075

 $[\mathsf{same}\ B,D]$

Chiral periphery: Dispersive representation





Process operator \to hadronic states $\to N\bar{N}$ in unphysical region $t<4M_N^2$

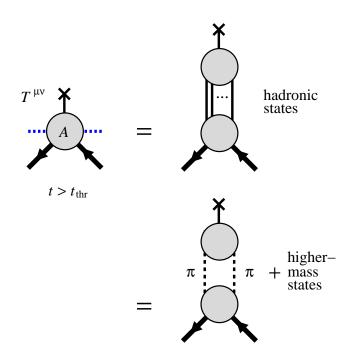
Dispersive representation of densities

$$\rho_A(b) = \int_{t_{\text{thr}}}^{\infty} \frac{dt}{2\pi^2} K_0(\sqrt{t}b) \operatorname{Im} A(t)$$

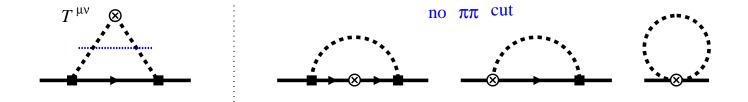
 $K_0 \sim e^{-b\sqrt{t}}$ exponential suppression of large t

Large $b\leftrightarrow \text{small }t'$ Strikman, CW 2010; Miller, Strikman, CW, 2011

• Densities at $b = \mathcal{O}(M_\pi^{-1})$ from $\pi\pi$ cut



Chiral periphery: EM tensor $\pi\pi$ cut



ullet EM tensor in $\chi {\sf EFT}$ from Noether theorem

Current made from π and N fields, πN interactions in Lagrangian

Need only $\pi\pi$ cut of form factors, generated by pionic current

$$T^{\mu\nu}[\pi] \ = \ \textstyle \sum_a \left(\partial^\mu \pi^a \partial^\nu \pi^a - \frac{1}{2} g^{\mu\nu} \partial^\rho \pi^a \partial_\rho \pi^a + \frac{1}{2} g^{\mu\nu} M_\pi^2 \pi^a \pi^a \right) + \text{terms } \pi^4 ...$$

Symmetric tensor, uniquely determined by chiral symmetry, not to be improved Voloshin, Dolgov 82; Leutwyler, Shifman 89

Nucleon form factors and densities

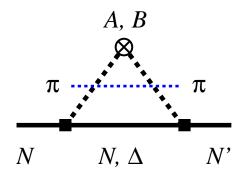
$$A(t), B(t)$$
 $\pi\pi$ cut $ho_A(b),
ho_B(b)$ leading at $b=\mathcal{O}(M_\pi^{-1})$ $D(t)$ no $\pi\pi$ cut $\rho_D(b)$ suppressed $G_A(t)$ no $\pi\pi$ cut $\rho_S(b)$ suppressed

Chiral periphery: AM densities in QCD

- ullet The EM tensor from Noether's theorem in $\chi {\rm EFT}$ corresponds to the total quark + gluon EM tensor in QCD
- The χ EFT results imply that at $b=\mathcal{O}(M_\pi^{-1})$ the orbital + gluon AM density is leading, the quark spin density is suppressed
- These properties follow from (i) the specific form of the pion EM tensor dictated by chiral invariance; (ii) the dominance of the $\pi\pi$ cut at peripheral distances. Qualitative conclusions, robust.
- The conclusions do not depend on the choice of QCD EM tensor

```
T^{\{\mu\nu\}}[{
m Belinfante}] = T^{\{\mu\nu\}}[{
m kinetic}] leading, T^{[\mu\nu]}[{
m Belinfante}] 
eq T^{[\mu\nu]}[{
m kinetic}] suppressed
```

Chiral periphery: AM densities



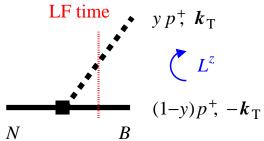
• Calculated ${\rm Im}A, B(t)$ in $\chi {\rm EFT},$ $\rho_{A,B}(b)$ and $\langle L^z \rangle$ from dispersion relatn

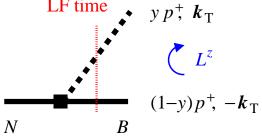


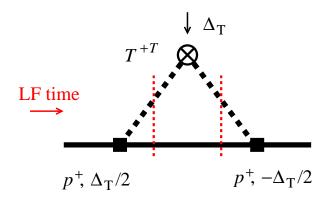
- Densities decay exponentially $\langle L^z \rangle \sim \exp(-2M_{\pi}b)P(M_{\pi},M_N,b)$
- ullet $\langle L^z \rangle$ similar to isovector charge density
- ullet N and Δ intermediate states produce opposite sign, cancel in large- N_c limit

Granados, CW, arXiv:1905.02742

Chiral periphery: Light-front formulation







• χ EFT in LF formulation

Chiral processes as sequence in LF time

Chiral LF wave function $N \to \pi B$ $(B = N, \Delta)$

$$\Psi_{N o \pi B}(y, \boldsymbol{k}_T, \sigma_B | \sigma) = \frac{\langle \pi B | \mathcal{L}_\chi | N \rangle}{M_{\pi B}^2 - M_N^2}$$

LF helicity states, πB configurations with $L^z \neq 0$

AM density in LF formulation

First-quantized representation, WF overlap

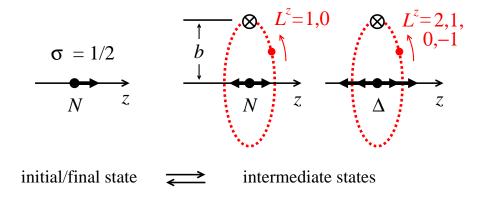
Operator is quantum-mechanical L^z

Equivalent to invariant formulation Granados, CW, arXiv:1905.02742

$$\langle L^z
angle(b) = \sum_{B=N,\Lambda} rac{C_B}{4\pi} \int rac{dy}{yar{y}^2} \sum_{\sigma_B} \Phi_{N o\pi B}^*(y,m{r}_T,\sigma_B|\sigma) \left[m{r}_T imes (-i)rac{\partial}{\partialm{r}_T}
ight] \Phi_{N o\pi B}(y,m{r}_T,\sigma_B|\sigma)$$

 $[\Phi \text{ coordinate-space WF}, \boldsymbol{r}_T = \boldsymbol{b}/\bar{y}, \ \sigma = +\frac{1}{2}].$

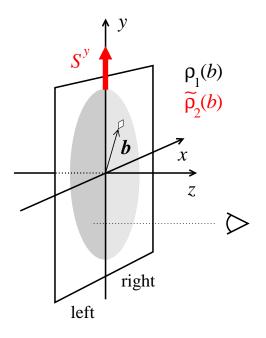
Chiral periphery: Mechanical picture

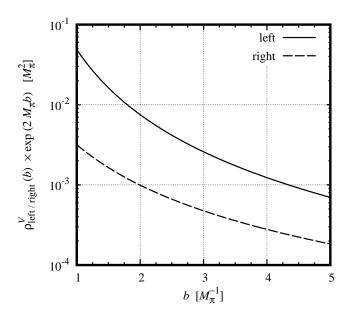


Original nucleon with $\sigma=\frac{1}{2}$ Transition to πB state with $L^z\leftrightarrow\sigma_B$ Operator measures density of $L^z\neq 0$

- Useful representation
 - Intuitive understanding
 - Relation of peripheral AM density to other densities
 - Weights of N and Δ intermediate states, $N_c \to \infty$ limit
 - Positivity conditions from quadratic form
- ullet Based on "true" large-distance dynamics of QCD encoded in $\chi {\sf EFT}$

Extensions: Electromagnetic densities





• Transverse charge/magnetization densities Soper 1976, Burkardt 2000, Miller 2007

$$\langle N'|J^{\mu}|N\rangle \rightarrow F_1, F_2(t) \rightarrow \rho_1, \rho_2(b)$$

Interpretation in transverse polarized state

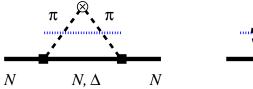
$$\langle J^+(\boldsymbol{b})\rangle_{y-\text{pol}} = \rho_1(b) + (2S^y)\cos\phi \ \widetilde{\rho}_2(b)$$

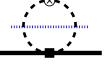
$$\rho_1, \widetilde{\rho}_2 = \langle J^+ \rangle_{\text{right}} \pm \langle J^+ \rangle_{\text{left}}$$
 left-right asymmetry

ullet Peripheral densities calculated in $\chi {\sf EFT}$

Large left-right asymmetry

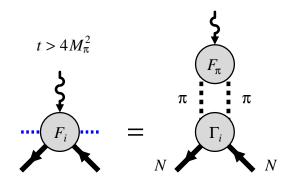
Mechanical picture with transversely orbiting pion

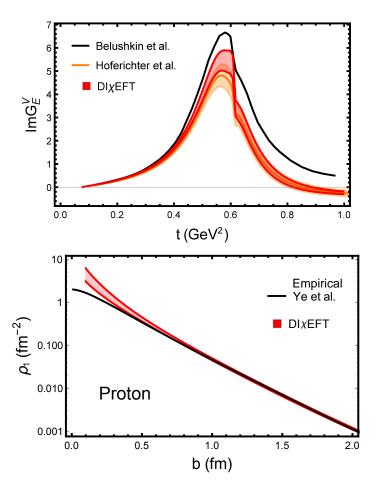




Granados, CW JHEP 1401, 092 (2014); 1507, 170 (2015); 1606 (2016) 075

Extensions: $\pi\pi$ rescattering through unitarity





- ${\rm Im}\, F_{1,2}(t)$ on $\pi\pi$ cut strongly affected by $\pi\pi$ rescattering, ρ resonance
 - Traditional $\chi {\sf EFT}$ calculations poorly convergent
- Method for including $\pi\pi$ rescattering

Elastic unitarity relation + N/D representation

 $\pi\pi o Nar{N}$ coupling from $\chi {\sf EFT}$

 $\pi\pi$ rescattering from timelike pion form factor measured in e^+e^- annihilation

Realistic spectral functions up to $t\sim 1~{\rm GeV}^2$ Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017); Alarcon, Weiss, PRC 96, 055206 (2017) PRC 97, 055203 (2018) Similar method: Granados, Leupold, Perotti 2017

ullet Realistic densities down to $b\sim 0.5$ fm

Other application: Proton radius extraction Alarcon, Higinbotham, Weiss, Ye PRC 99, 044303 (2019)

Extensions: Other structures

• EM tensor and AM densities with $\pi\pi$ rescattering

Requires pion form factors as input

D-term: Pasquini, Polyakov, Vanderhaeghen 2017

• Form factors and densities with 3π cut

Isoscalar electromagnetic densities, isovector EM tensor densities, isoscalar spin density

Use methods of 3-body unitarity, presently being developed for amplitude analysis and LQCD Szczepaniak et al, Jackura, Pilloni, Döring et al

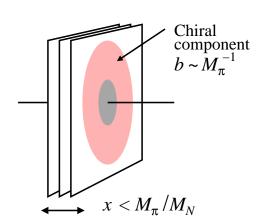
• Peripheral *x*-dependent GPDs

Calculated in $\chi {\sf EFT}$

Strikman, CW 2009; Granados, CW 2015

Can be probed in peripheral high-energy processes at EIC

Strikman, CW 2004



- Definition of AM operators in QCD well understood, incl. local densities. Can be used for nucleon structure studies!
- Transverse AM densities at $b = \mathcal{O}(M_{\pi}^{-1})$ calculated in χEFT

Two-pion cut of invariant form factors + dispersion relation

Light-front time-ordered formulation

- In periphery the symmetric EM tensor dominates, antisymmetric suppressed. In terms of QCD DOF, orbital + gluon AM dominates, quark spin suppressed
- In periphery the field-theoretical AM density coincides with the quantum-mechanical AM density of the soft pions in the chiral processes
- Peripheral nucleon structure as new field of study

"Deconstruct" nucleon in systematic approximation

Manifestation of chiral symmetry breaking in QCD

Peripheral high-energy processes at EIC