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• Angular momentum in QCD

Spin and orbital AM operators

Energy-momentum tensor and form factors

Light-front AM densities

• Angular momentum in chiral periphery

Transverse densities at b ∼ 1/Mπ

Dispersive representation and χEFT calculation
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Mechanical picture

• Connections and extensions

Electromagnetic densities

ππ rescattering through unitarity with J. M. Alarcon
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AM in QCD: Objectives 2

Composition of nucleon spin from quark and gluon spin and orbital angular momentum

Local densities of angular momenta and mechanical interpretation←
Measurement of angular momenta in deep-inelastic processes

Calculations using nonperturbative methods: EFT, LQCD←

Challenges

Gauge invariance: Redundant DOF, equivalence classes, different form of operators

Non-uniqueness of EM tensor: Terms conserved without equations of motion, improvement

Interactions: Partonic operator beyond twist-2

Rotational invariance: Not manifest in light-front quantization↔ high-energy processes

Measurement vs. interpretation: May favor/require different choice of operators

No attempt to review history of subject here. For review see Leader, Lorcé Phys. Rept. 541 (2014) 163 2014

Some important works: Jaffe, Manohar 1990; Ji 1996; Polyakov 2003; Bakker, Leader, Trueman 2004; Burkardt 2005;

Chen, Lu, Sun, Wang, Goldman 2008; Wakamatsu 2010; Hatta 2011; Lorce, Pasquini 2011; Lorce 2013; Leader; Lorcé 2014



AM in QCD: Operators 3

• Invariance of action → conserved local currents → global charges

Space-time translations → EM tensor T µν(x) → total mom P i =
∫
d3xT 0i(x)

Rotations → AM tensor Jµαβ(x) → total AM J i = 1
2ǫ
ijk

∫
d3x J0jk(x)

• Angular momentum tensor Lorcé, Mantovani, Pasquini 2017

Jµαβ = Sµαβq + Lµαβq + Jµαβg total AM, “kinetic” definition

Sµαβq = 1
2ǫ
µαβγ ∑

f ψ̄fγγγ
5ψf quark spin, cf. axial current

Lµαβq = xαT µβq − xβT µαq quark orbital AM

Jµαβg = xαT µβg − xβT µαg gluon total AM

Gauge-invariant local operators

Individual terms scale-dependent, total scale-independent

Gluon AM cannot be split in spin and orbital in gauge-invariant manner

T µνq not symmetric in kinetic definition; alt definition with
Belinfante-improved symmetric T µνq and no explicit quark spin Lorcé, Leader 2014; Lorcé 2015

→



AM in QCD: EM tensor form factors 4
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• Nucleon matrix element of EM tensor Bakker, Leader, Trueman 04

A(t), B(t)... invariant functions of t ≡ ∆2, cf. vector/axial form factors

A = Aq + Ag, individually scale-dependent, total scale-independent

Sum rules A(0) = 1, B(0) = 0

• Relation to GPDs

[Aq + Bq](t) =
∫ 1

−1 dx x [Hq + Eq](x, ξ, t) second moment of GPDs Ji 96

Cq(t) =
∫ 1

−1 dααDq(α, t) normalization of D-term Polyakov, CW 99; Polyakov et al. 2000

→



AM in QCD: EM tensor transverse densities 5
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• Light-front view Soper 1976, Burkardt 2000, Miller 2007

Structure at fixed LF time x+ = x0 + x3

Densities boost-invariant, frame-independent

Separate hadron structure↔ vacuum fluctuations

Dynamical models: LF quantization, wave function

Connection with parton picture, QCD operators

• Transverse densities

A(t = −∆2
T) =

∫
d2b ei∆T b ρA(b) [same B,D]

Density of momentum etc. at transverse position b

A(0) =

∫
d
2
b ρA(b) total momentum



AM in QCD: AM transverse densities 6

• Transverse density of orbital AM in LF quantization

〈T+T〉(∆T ) ≡ 〈p+,∆T/2, σ|T+T |p+,−∆T/2, σ〉 matrix element, σ LF helicity

T
+T

(b) ≡
∫
d2∆T

(2π)2
e
−i∆T ·b 〈T+T〉(∆T ) T+T transverse density

〈Lz〉(b) ≡ [b× T
+T

(b)]
z
/(2p

+
) orbital AM density

= −σ
2

(
b
d

db

)
[ρA + ρB + ρD](b) expressed through EM form factors

Adhikari, Burkardt 2016; Lorcé, Mantovani, Pasquini 2017; Granados, CW 2019

• Transverse density of quark spin

〈Sz〉(b) ≡ σ ρS(b) ρS transverse density of nucleon axial FF GA(t)

• AM sum rule
∫
d2b [〈Sz〉 + 〈Lz〉](b) = σ = Sz(rest rame) = ±1/2.



AM in QCD: AM transverse densities II 7

• “Dual role” of AM transverse densities 〈Lz〉(b), 〈Sz〉(b)

Calculated through the invariant form factors A,B,D(t) and GA(t) without reference
to LF quantization, using a variety of methods: Chiral EFT, dispersion theory, Euclidean
correlators and LQCD

Interpreted in context of LF quantization: Mechanical picture, partonic interpretation

• “New quantities” for nucleon structure studies!



Chiral periphery: Effective dynamics 8
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• Large-distance dynamics emerging from QCD

Spontaneous breaking of chiral symmetry

Pion as Goldstone boson, almost massless Mπ ≪ Λχ,
weakly coupled for pπ = O(Mπ), form of interactions
determined by underlying chiral symmetry

Dynamics constructed and solved using EFT methods
Gasser, Leutwyler 1983; Weinberg 1990

Coupling to QCD operators

• Peripheral transverse densities

Use distance as parameter b = O(M−1
π )

Calculate densities in χEFT: systematic, model-indep.,
actual large-distance dynamics of QCD

Mechanical picture, new insight

Method developed for electromagnetic densities
Granados, Weiss JHEP 1401, 092 (2014), JHEP 1507, 170 (2015),
JHEP 1606 (2016) 075



Chiral periphery: Dispersive representation 9
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• Dispersive representation of form factors

A(t) =

∞∫

tthr

dt′

π

ImA(t′)

t′ − t− i0
[same B,D]

Process operator→ hadronic states→ NN̄
in unphysical region t < 4M2

N

• Dispersive representation of densities

ρA(b) =

∞∫

tthr

dt

2π2
K0(
√
tb) ImA(t)

K0 ∼ e−b
√
t exponential suppression of large t

Large b↔ small t′
Strikman, CW 2010; Miller, Strikman, CW, 2011

• Densities at b = O(M−1π ) from ππ cut
→



Chiral periphery: EM tensor ππ cut 10

µν no ππ cutT

• EM tensor in χEFT from Noether theorem

Current made from π and N fields, πN interactions in Lagrangian

Need only ππ cut of form factors, generated by pionic current

T µν[π] =
∑

a

(
∂µπa∂νπa − 1

2g
µν∂ρπa∂ρπ

a + 1
2g

µνM2
ππ

aπa
)
+ terms π4...

Symmetric tensor, uniquely determined by chiral symmetry, not to be improved
Voloshin, Dolgov 82; Leutwyler, Shifman 89

• Nucleon form factors and densities

A(t), B(t) ππ cut ρA(b), ρB(b) leading at b = O(M−1
π )

D(t) no ππ cut ρD(b) suppressed

GA(t) no ππ cut ρS(b) suppressed



Chiral periphery: AM densities in QCD 11

• The EM tensor from Noether’s theorem in χEFT corresponds to the total
quark + gluon EM tensor in QCD

• The χEFT results imply that at b = O(M−1π ) the orbital + gluon AM
density is leading, the quark spin density is suppressed

• These properties follow from (i) the specific form of the pion EM tensor dictated
by chiral invariance; (ii) the dominance of the ππ cut at peripheral distances.
Qualitative conclusions, robust.

• The conclusions do not depend on the choice of QCD EM tensor

T {µν}[Belinfante] = T {µν}[kinetic] leading,

T [µν][Belinfante] 6= T [µν][kinetic] suppressed



Chiral periphery: AM densities 12
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• Calculated ImA,B(t) in χEFT,
ρA,B(b) and 〈Lz〉 from dispersion relatn

• Densities decay exponentially
〈Lz〉 ∼ exp(−2Mπb)P (Mπ,MN , b)

• 〈Lz〉 similar to isovector charge density

• N and ∆ intermediate states produce
opposite sign, cancel in large-Nc limit

Granados, CW, arXiv:1905.02742



Chiral periphery: Light-front formulation 13
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• χEFT in LF formulation

Chiral processes as sequence in LF time

Chiral LF wave function N → πB (B = N,∆)

ΨN→πB(y,kT , σB|σ) =
〈πB|Lχ|N〉
M2

πB −M2
N

LF helicity states, πB configurations with Lz 6= 0

• AM density in LF formulation

First-quantized representation, WF overlap

Operator is quantum-mechanical Lz

Equivalent to invariant formulation
Granados, CW, arXiv:1905.02742

〈Lz〉(b) =
∑

B=N,∆

CB

4π

∫
dy

yȳ2

∑

σB

Φ
∗
N→πB(y, rT , σB|σ)

[
rT × (−i) ∂

∂rT

]
ΦN→πB(y, rT , σB|σ)

[Φ coordinate-space WF, rT = b/ȳ, σ = +1
2].



Chiral periphery: Mechanical picture 14
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L L =1,0

σ

2,1,
0,−1

= 1/2

N N ∆

=

Original nucleon with σ = 1
2

Transition to πB state with Lz ↔ σB

Operator measures density of Lz 6= 0

• Useful representation

Intuitive understanding

Relation of peripheral AM density to other densities

Weights of N and ∆ intermediate states, Nc →∞ limit

Positivity conditions from quadratic form

• Based on “true” large-distance dynamics of QCD encoded in χEFT



Extensions: Electromagnetic densities 15
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• Transverse charge/magnetization densities
Soper 1976, Burkardt 2000, Miller 2007

〈N ′|Jµ|N〉 → F1, F2(t)→ ρ1, ρ2(b)

• Interpretation in transverse polarized state

〈J+(b)〉y−pol = ρ1(b) + (2Sy) cosφ ρ̃2(b)

ρ1, ρ̃2 = 〈J+〉right ± 〈J+〉left left-right asymmetry

• Peripheral densities calculated in χEFT

Large left-right asymmetry

Mechanical picture with transversely orbiting pion

∆

ππ

N NN,

Granados, CW JHEP 1401, 092 (2014); 1507, 170 (2015); 1606 (2016) 075



Extensions: ππ rescattering through unitarity 16
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Empirical

• ImF1,2(t) on ππ cut strongly affected
by ππ rescattering, ρ resonance

Traditional χEFT calculations poorly convergent

• Method for including ππ rescattering

Elastic unitarity relation + N/D representation

ππ → NN̄ coupling from χEFT

ππ rescattering from timelike pion form factor
measured in e+e− annihilation

Realistic spectral functions up to t ∼ 1 GeV2

Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 964, 18 (2017);
Alarcon, Weiss, PRC 96, 055206 (2017) PRC 97, 055203 (2018)
Similar method: Granados, Leupold, Perotti 2017

• Realistic densities down to b ∼ 0.5 fm

Other application: Proton radius extraction
Alarcon, Higinbotham, Weiss, Ye PRC 99, 044303 (2019)



Extensions: Other structures 17

• EM tensor and AM densities with ππ rescattering

Requires pion form factors as input D-term: Pasquini, Polyakov, Vanderhaeghen 2017

• Form factors and densities with 3π cut

Isoscalar electromagnetic densities, isovector EM tensor densities, isoscalar spin density

Use methods of 3-body unitarity, presently being developed for amplitude analysis and LQCD
Szczepaniak et al, Jackura, Pilloni, Döring et al

• Peripheral x-dependent GPDs

Calculated in χEFT Strikman, CW 2009; Granados, CW 2015

Can be probed in peripheral high-energy processes at EIC Strikman, CW 2004

< /Mπ MN

~b Mπ
−1

x

component
Chiral



Summary 18

• Definition of AM operators in QCD well understood, incl. local densities.
Can be used for nucleon structure studies!

• Transverse AM densities at b = O(M−1π ) calculated in χEFT

Two-pion cut of invariant form factors + dispersion relation

Light-front time-ordered formulation

• In periphery the symmetric EM tensor dominates, antisymmetric suppressed.
In terms of QCD DOF, orbital + gluon AM dominates, quark spin suppressed

• In periphery the field-theoretical AM density coincides with the
quantum-mechanical AM density of the soft pions in the chiral processes

• Peripheral nucleon structure as new field of study

“Deconstruct” nucleon in systematic approximation

Manifestation of chiral symmetry breaking in QCD

Peripheral high-energy processes at EIC


