Precise determination of proton magnetic radius from electron scattering data

J.M. Alarcón (U. de Alcalá), D.W. Higinbotham, C. Weiss* (JLab), APS DNP Meeting 30-Oct-20

Radius extraction using theory-based method: Dispersively improved chiral EFT

- Combines dispersion theory (analyticity, sum rules) and χEFT (dynamics, controlled accuracy)
- Correlates values of radii with FF behavior at larger $Q^2 \lesssim 1\text{ GeV}^2$
- Enables reliable determination of magnetic radius

Method: J. M. Alarcon, C. Weiss, PLB 784 (2018) 373; PRC 97, 055203 (2018);

Radius extraction: J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) 035203
Motivation: Analyticity in radius extraction

- Challenges in proton radius extraction

 Derivative at $Q^2 = 0$ from data at finite $Q^2 > 0$

 Extrapolation $Q^2 \to 0$: Stability, functional bias?
 Barcus, Higinbotham, this session

 Magnetic radius: Contribution of G_M^p to cross section $\propto \tau/\epsilon$, vanishes for $Q^2 \to 0$

- Analyticity

 FFs analytic functions of $t = -Q^2$

 Singularities at $t > 0$: Hadronic exchanges

 Correlates functional behavior of FF at $Q^2 > 0$ with derivative at $Q^2 = 0$

 Predicts size of higher derivatives

 Global properties: Sum rules

 Use in radius extraction!
DIχEFT: Dispersively improved chiral EFT

- **Dispersive representation**

\[
F_i(t) = \int_{t_{\text{thr}}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} F_i(t')}{t' - t - i0}
\]

Expresses analytic structure

\[\text{Im} F_i\] spectral function, constructed theoretically

- **Spectral function in ππ region**

Elastic unitarity relation
Frazer, Fulco 1960; Höhler et al 1975+

Factorize \(\pi\pi \) rescattering using N/D method

\[
\Gamma_i/F_{\pi}: \pi\pi-NN \text{ coupling, calculated in } \chi\text{EFT}
\]

good convergence

\[
|F_{\pi}|^2: \pi\pi \text{ rescattering, taken from } e^+e^- \text{ data}
\]

Presently implemented LO + NLO + partial N2LO
DIχEFT: Sum rules and parameters

- Spectral function in high-mass region

 Parameterized by effective pole

 Sufficient for low-Q^2 form factors, uncertainty quantified

 Alarcon, Weiss PLB 784 (2018) 373

- Sum rules and parameters

 Sum rules for $F(0), F'(0) = \text{charges, radii}$

 Express χEFT LEC in terms of radii

 Radii appear directly as parameters of spectral functions, control behavior

\[
\begin{align*}
\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \frac{\text{Im} F_1(t)}{t} &= Q \\
\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \frac{\text{Im} F_1(t)}{t^2} &= \frac{1}{6} \langle r^2 \rangle_1 \\
\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \frac{\text{Im} F_2(t)}{t} &= \kappa \\
\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \frac{\text{Im} F_2(t)}{t^2} &= \frac{1}{6} \kappa \langle r^2 \rangle_2
\end{align*}
\]
• Spectral functions in $\pi\pi$ region

Band shows variation with radii (PDG range)

Good agreement with Roy-Steiner results

Hoferichter et al 2017
DIXEFT: Form factors

- Form factors from dispersion integral
 \[G_{E,M}(t) = \int_0^\infty \frac{dt'}{\pi} \frac{\text{Im} G_{E,M}(t')}{t' - t - i0} \]

- Family of FFs depending on radii
 Each member respects analyticity, sum rules
 Each has intrinsic theoretical uncertainty

- Radius correlated with finite-\(Q^2\) behavior
 Provided by analyticity
 Use for radius extraction!

\(G_M\) similar, dependence on \(r_M\)

Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303
Empirical FF: Global fit Ye et al 2017
Magnetic radius extraction: Procedure

- Use DIχEFT $G_{E,M}^p(Q^2)$ with params r_E^p, r_M^p

- Fit Mainz A1 cross section data

 $E = 0.18–0.855$ GeV, $Q^2 = 0.003–1.0$ GeV2

 Fit original cross secns with floating normalizations

 Alt: Fit reanalyzed cross secns of Lee Arrington Hill 2015

 with recalc uncertainties: Same radii, lower χ^2

- Impact on magnetic radius

 Sensitivity of cross section to G_M^p

 Dependence of DIχEFT G_M^p on r_M^p

 Theoretical uncertainty from high-mass pole

 Use data up to $Q^2 \approx 0.5$ GeV2
Magnetic radius extraction: Results

- Extracted radii

\[r^D_E = 0.842 \pm 0.002 \text{ (fit 1}\sigma) \pm^{0.005}_{-0.002} \text{ (theory full-range) fm} \]

\[r^D_M = 0.850 \pm 0.001 \text{ (fit 1}\sigma) \pm^{0.009}_{-0.004} \text{ (theory full-range) fm} \]

Magnetic radius has smaller fit uncertainty, larger theory uncertainty.

Magnetic radius needs theory-based extraction method.

Consistent with results of empirical dispersive fits

Lorenz, Hammer, Meissner 2012

Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203
Summary

- DIχEFT describes nucleon FFs combining dispersion theory and χEFT

 Includes $\pi\pi$ rescattering and ρ resonance through unitarity
 Enables predictive calculations, controlled theoretical accuracy
 Excellent agreement with empirical FFs up to $Q^2 \sim 1 \text{ GeV}^2$ and beyond

- DIχEFT enables theory-based radius extraction

 Correlates $Q^2 = 0$ derivatives with finite-Q^2 behavior through analyticity + sum rules
 Employs radii directly as parameters \leftrightarrow LECs
 Enables reliable determination of magnetic radius from finite-Q^2 data

- Other DIχEFT applications

 Nucleon transverse charge/magnetization densities
 Alarcon, Weiss, in progress. APS DNP presentation KC.2 (Saturday 8:30 CDT)

 Nucleon scalar FF
 Alarcon, Weiss, PRC 96, 055206 (2017)
Supplement: DIχEFT form factors

\[G_{E,M}(t) = \int \frac{dt'}{4M^2} \frac{\text{Im} G_{E,M}(t')}{\pi} \frac{t' - t - i0}{t'^2} \]

- DIχEFT form factors
 - Evaluated using dispersion integral with spectral functions
 - Band shows variation with radii (PDG range).
 - Also quantified uncertainty from high-mass states
 - Excellent agreement with data. Not fit, but prediction based on dynamics