Nucleon EM form factors and radius extraction with dispersively improved chiral EFT

C. Weiss (JLab), J.M. Alarcón (U. de Alcalá), MUSE Collaboration Meeting, 26-Oct-20

Summary: New method for calculating/analyzing nucleon FFs combining dispersion theory and χEFT

Implements analyticity in momentum transfer t

Includes $\pi\pi$ rescattering and ρ resonance through unitarity

Enables predictive calculations, controlled theoretical accuracy

Uses radii as parameters ↔ LECs, ideally suited for radius extraction

Outline

Motivation: Analyticity in radius extraction

Method: Dispersive representation, elastic unitarity, χEFT input, radii as parameters

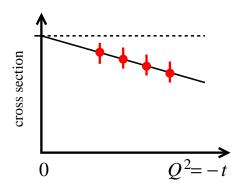
Results: Spectral functions, form factors, uncertainties

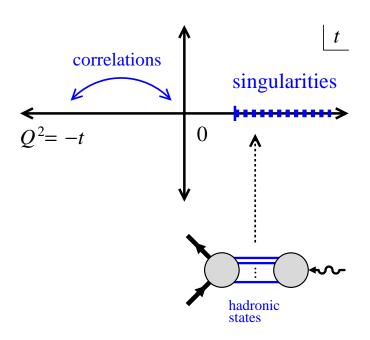
Applications: Proton radius extraction from ep scattering, electric and magnetic

Applications: μp scattering \leftarrow

Method: J. M. Alarcon, C. Weiss, PLB 784 (2018) 373; PRC **97,** 055203 (2018); J. M. Alarcon, A. N. Hiller Blin, M. Vicente Vacas, C. Weiss, NPA **964**, 18 (2017) Applications: J. M. Alarcon, D. Higinbotham, C. Weiss, Z. Ye, PRC 99 (2019) 044303; J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) 035203

Motivation: Analyticity





Challenges in proton radius extraction

Derivative at $Q^2=0 \ \leftrightarrow \ \mathrm{data}$ at finite $Q^2>0$

Extrapolation $Q^2 \to 0$: Stability, functional bias

Higher derivatives? \rightarrow Dynamical scales?

Magnetic radius: Contribution of $G_M^p \propto \tau/\epsilon$, vanishes for $Q^2 \to 0$

Analyticity

FFs analytic functions of $t = -Q^2$

Singularities: Branch cuts at t > 0. Hadronic exchanges

Positions of singularities: Hadron masses ✓

Strengh of singularities: Couplings, phase space ?

Implications for FF behavior at t < 0 and radius extraction!

Motivation: Analyticity

• Implications of analyticity

Correlates functional behavior of FF at ${\cal Q}^2>0$ with derivatives ${\cal Q}^2=0$

Predicts size of higher derivatives from dynamical scales (in singularities), stable results

Provides sum rules relating integrals over singularities with local derivatives F'(0) etc.

These features can be implemented/exploited without complete knowledge of the functions! We can/should use them for radius extraction!

• New method: DI χ EFT

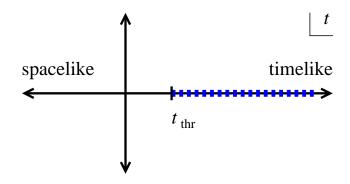
Implement analyticity through dispersion relation

Correlate radii with behavior of FFs at finite $Q^2>0$ through sum rules (radii as parameters)

Uniquely suited for radius extraction!

[Other approaches based on analyticity: z-expansion — only analyticity, no dynamical input Traditional dispersion theory with $\pi\pi$ continuum — complete predictions, no flexibility Höhler et al. 1975+; Belushkin, Hammer, Meissner 2007; Lorenz, Hammer, Meissner 2012

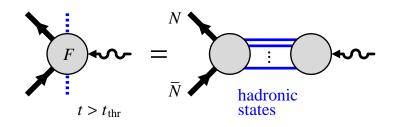
Method: Dispersive representation



Dispersive representation

$$F_i(t) = \int_{t_{\text{thr}}}^{\infty} \frac{dt'}{\pi} \frac{\operatorname{Im} F_i(t')}{t' - t - i0}$$

Expresses analytic structure of $F_i(t)$



• Spectral functions $\operatorname{Im} F_i(t)$

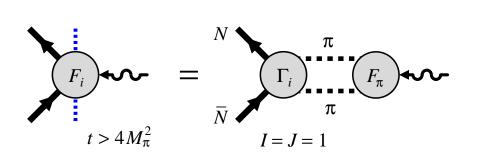
Current \rightarrow hadronic states $\rightarrow N\bar{N}$

Processes in unphysical region $t < 4 M_N^2$

Spectral functions to be provided by theory Frazer, Fulco 1960; Höhler et al 1975+

Isovector: $\pi\pi$ (incl. ρ), 4π , $K\bar{K}$, ... Isoscalar: 3π (incl. ω), $K\bar{K}$ (incl. ϕ), ...

Method: Spectral functions on $\pi\pi$ cut



$$\mathrm{Im}F_i(t) = rac{k_{
m cm}^3}{\sqrt{t}} \; \Gamma_i(t) \; F_\pi^*(t)$$

$$= rac{k_{
m cm}^3}{\sqrt{t}} \; rac{\Gamma_i(t)}{F_\pi(t)} \; |F_\pi(t)|^2$$
 $\chi \mathsf{EFT}$ Data

• Elastic unitarity relation

 $F_{\pi}(t)$ timelike pion FF, $\Gamma_i(t)$ partial-wave amplitude $\pi\pi o Nar{N}$

Amplitudes have same phase from $\pi\pi$ rescattering — Watson's theorem

Factorized representation (N/D method)

 Γ_i/F_π free of $\pi\pi$ rescattering

 $|F_\pi|^2$ includes $\pi\pi$ rescattering, ρ resonance

 \rightarrow calculate in χ EFT, well convergent

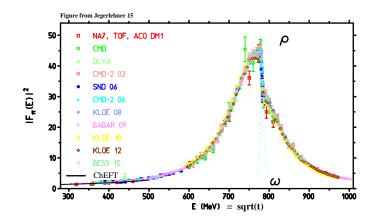
 \rightarrow take from e^+e^- data, LQCD

• New χ EFT-based approach

Method: Chiral EFT

$$\Gamma_{i} = N \qquad \Delta \qquad + N2LO$$

$$+ N2LC$$



• Relativistic $\chi {\sf EFT}$

Expansion in $\{M_\pi,k_\pi\}/\Lambda_\chi$

Include Δ isobar

• Calculation of $\Gamma_i(t)/F_\pi(t)$

LO: Born terms + Weinberg-Tomozawa

NLO: Contact term in $\Gamma_i(t)$

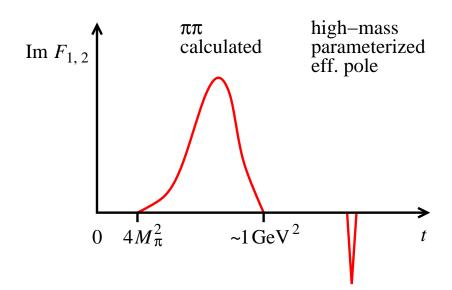
N2LO: Contact term and pion loops Presently: Use Partial N2LO, unknown LEC

Good convergence

• Pion timelike FF $|F_{\pi}(t)|^2$

Measured accurately in $e^+e^-\to\pi^+\pi^-$

Method: Sum rules and parameters



$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im} F_1(t)}{t} = Q$$

$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im} F_1(t)}{t^2} = \frac{1}{6} \langle r^2 \rangle_1$$

$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im} F_2(t)}{t} = \kappa$$

$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im} F_2(t)}{t^2} = \frac{1}{6} \kappa \langle r^2 \rangle_2$$

Spectral functions

 $\pi\pi$ continuum calculated: Elastic unitarity $+\chi {\rm EFT}$

High-mass states parameterized: Effective pole

Sufficient for low- Q^2 form factors, uncertainty quantified

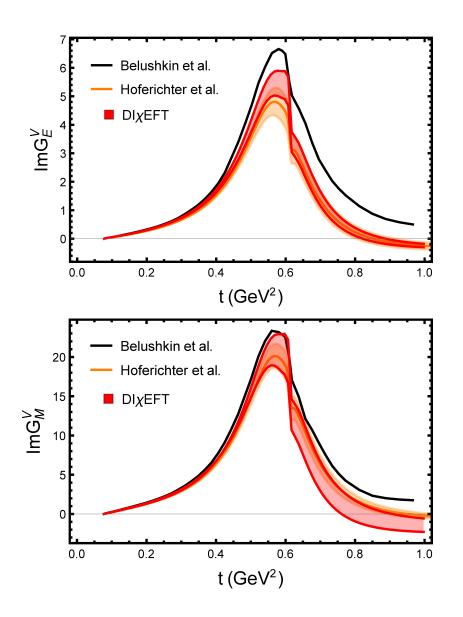
Sum rules and parameters

Sum rules for F(0), F'(0) = charges, radii

Express $\chi {\sf EFT}$ LEC in terms of radii

Radii appear directly as parameters, control global behavior of FF!

Results: Spectral functions

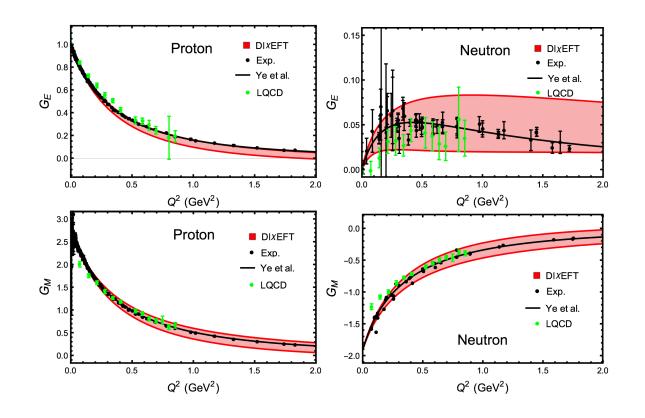


- DI χ EFT spectral functions in $\pi\pi$ region Band shows uncertainty from radii
 - Good agreement with Roy-Steiner results Hoferichter et al 2017
- Qualitative improvement compared to traditional $\chi {\rm EFT}$

 $\pi\pi$ rescattering included through $|F_{\pi}(t)|^2$

Alarcon, Weiss, PLB 784 (2018) 373 Uncertainty bands: PDG range of nucleon radii

Results: Form factors



$$G_i(t) = \int_{4M_\pi^2}^{\infty} \frac{dt'}{\pi} \frac{\text{Im } G_i(t')}{t' - t - i0}$$

Alarcon, Weiss, PLB 784 (2018) 373 Uncertainty bands: PDG range of nucleon radii

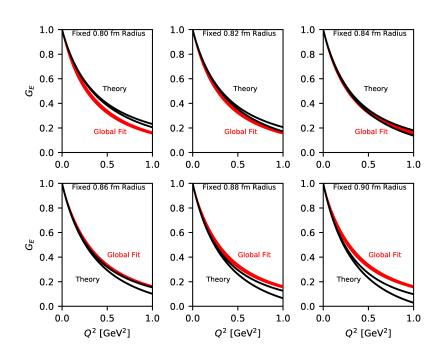
• DI χ EFT form factors

Evaluated using dispersion integral with spectral functions

Band shows uncertainty from radii. Also quantified uncertainty from high-mass states

Excellent agreement with data. Not fit, but prediction based on dynamics

Applications: Proton radius extraction



Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303 Global FF fit from Ye et al 2017

 \bullet DI $\chi {\rm EFT}$ provides family of FFs $G_{E,M}(Q^2)$ depending on radii as parameters

Each member respects analyticity, sum rules

Each has intrinsic theoretical uncertainty

• Radius correlated with finite- Q^2 behavior

Provided by analyticity

Use for radius extraction

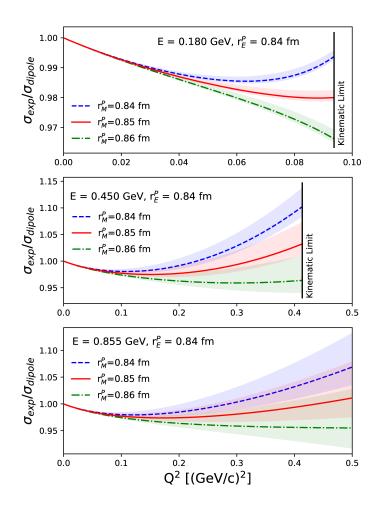
ullet Extracted r_E^p from FF fit

Compared DI χ EFT FFs with global fit $G_E^p(Q^2)$

Obtained $r_E^p = 0.844(7)~\mathrm{fm}$ (cf. muonic hydrogen)

 r_E^p constrained by data up to $Q^2 \sim \text{0.5 GeV}^2$

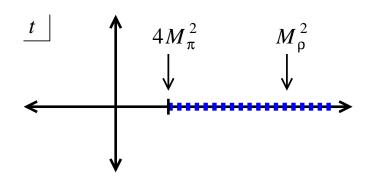
Applications: Proton radius extraction

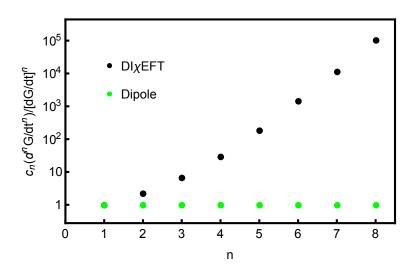


$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{\epsilon \left[G_E^p\right]^2 + \tau \left[G_M^p\right]^2}{\epsilon (1+\tau)}$$

- Extracted r_E^p and r_M^p from cross section fit Mainz A1 data $E=0.18-0.855~{\rm GeV},~Q^2=0.003-1.0~{\rm GeV}^2$ Used DI χ EFT $G_{E,M}^p(Q^2)$ dep on r_E^p, r_M^p Fitted cross sections with floating normalizations Quantified fit and theoretical uncertainties $r_E^p=0.842~\pm0.002~{\rm (fit}~1\sigma)~^{+0.005}_{-0.002}~{\rm (theory~full-range)~fm}$ $r_M^p=0.850~\pm0.001~{\rm (fit}~1\sigma)~^{+0.009}_{-0.004}~{\rm (theory~full-range)~fm}$
- DI χ EFT enables accurate r_M^p extraction Sensitivity to G_M^p only at finite Q^2

Applications: Higher derivatives





Alarcon, Weiss, PRC 97, 055203 (2018)

Form factor derivatives from DR

$$\left. \frac{d^n G_i^V(t)}{dt^n} \right|_{t=0} \ = \ \int_{4M_\pi^2}^\infty \frac{dt'}{\pi} \, \frac{\text{Im} \, G_i^V(t')}{t'^{n+1}}$$

Two dynamical scales

 $4M_\pi^2$ two-pion threshold

 $M_{
ho}^2$ maximum of spectral function

Relative weight depends on n

Unnatural size of higher derivatives

Model-independent prediction

Could be tested in polynomial fits

Applications: Muon scattering

- ullet Same framework can be used to simulate/analyze μp elastic scattering
- Implemented so far

Code for evaluating μp elastic cross section in terms of DI χ EFT FFs: Jupyter notebook

Studied sensitivity of cross section to radii in MUSE kinematics J. Alarcon

Two-photon exchange corrections can be included Use results of Tomalak, Vanderhaeghen 2016-18

• Further steps: Discussion

ullet DI χ EFT describes nucleon FFs combining dispersion theory and χ EFT

Includes $\pi\pi$ rescattering and ρ resonance through unitarity

Enables predictive calculations, controlled theoretical accuracy

Excellent agreement with empirical FFs up to $Q^2 \sim 1~{
m GeV}^2$ and beyond

• DI χ EFT enables theory-based radius extraction

Correlates $Q^2=0$ derivatives with finite- Q^2 behavior through analyticity + sum rules

Employs radii directly as parameters ↔ LECs

Extractions performed: FF and cross section fits, electric and magnetic radius

Other applications and extensions (not covered here)

Nucleon transverse charge/magnetization densities

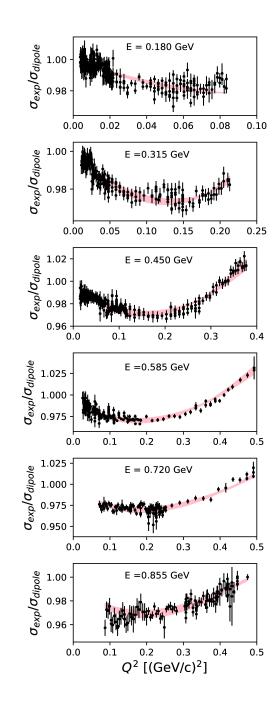
Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 96, 18 (2017); Alarcon, Weiss, in progress

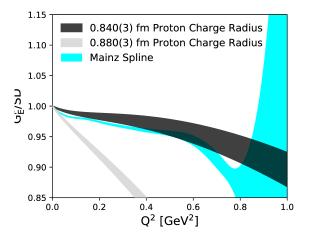
Nucleon scalar FF

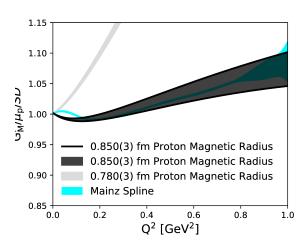
Alarcon, Weiss, PRC 96, 055206 (2017)

Resonance transition FFs $N o \Delta$ planned

Supplement: Radius extraction







Left: Mainz A1 data and DI χ EFT fit. The DI χ EFT predictions are shown at the radii corresponding to the best fit. The band shows the fit uncertainty.

Above: Comparison of DI χ EFT parameterization with the Mainz spline fit. The DI χ EFT predictions are shown for two values of the radii within the range of the Mainz fit.

J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) 035203