Exploring parton correlations with target fragmentation

C. Weiss (Jefferson Lab), EIC 2nd Detector Workshop, CFNS Stony Brook, 6-8 Dec 2022 [Webpage]

Dedicated physics/detector workshops

Target fragmentation physics with EIC CFNS Stony Brook 28-30 Sep 2020 [Webpage]

Target fragmentation and diffraction physics with novel processes, CFNS, 9-11 Feb 2022 [Webpage]

Topic in 2021 EIC Yellow Report [INSPIRE]]

Many-body systems

1p densities \rightarrow 2p correlations

Hadrons: Parton picture, QCD collinear sectors

Target fragmentation in DIS

Kinematic variables

QCD factorization and fracture functions

Exploring parton correlations

x, *z*, charge/flavor, spin dependence

 p_T dependence in current-target correlations \leftrightarrow chiral symmetry breaking in QCD vacuum

EIC measurements

Detector coverage for proton fragments

Many-body systems: Densities and correlations

Here: Fixed particle number

 $\Psi(\mathbf{r}_1, \dots \mathbf{r}_N) \quad \Phi(\mathbf{p}_1, \dots \mathbf{p}_N) \quad \text{N-particle wave function}$

1p density

$$\rho^{(1)}(\mathbf{r}) = \int d^3 r_1 \dots d^3 r_n \sum_i \delta(\mathbf{r} - \mathbf{r}_i) |\Psi(\mathbf{r}_1, \dots \mathbf{r}_N)|^2$$

Average particle density in position/momentum No information on configurations or interactions

2p density

$$\rho^{(2)}(\mathbf{r},\mathbf{r}') = \int d^3 r_1 \dots d^3 r_n \sum_{i,j} \delta(\mathbf{r}-\mathbf{r}_i) \,\delta(\mathbf{r}'-\mathbf{r}_j) \,|\Psi(\mathbf{r}_1,\dots,\mathbf{r}_N)|^2$$

Interactions in system

Character of motion: independent, correlated

$$\rho^{(2)} \leftrightarrow \rho^{(1)} \rho^{(1)}$$

2

Many-body systems: NN correlations in nuclei

1p nucleon density shows high-momentum tail

2p nucleon density reveals that tail results from correlated NN pairs

Many interesting results: Isospin structure pn, universality, 3N correlations...

Many-body systems: Hadrons

Parton picture

Hadron in high-energy processes as composite system of point particles

Closed system: Wave function

Soft interactions: Limited range in rapidity, multi-step interactions [Feynman, Gribov 70s]

QCD

Quarks/gluons not normally collinear: Interactions at large rapidities, UV divergences, renormalization

Collinear sectors in high-energy processes

Factorization: Radiation separated in collinear - hard - soft

Partonic wave function emerges in context of factorization, scale-dependent

Many-body systems: Target fragmentation

High-energy process removes parton

Observe fragmentation of target remnant

Correlations: Longitudinal momentum, spin/flavor, transverse momentum

DIS in *ep*: QCD factorization theorem for target fragmentation

Learn about interactions!

Target fragmentation: Kinematic variables

Feynman variable

$$x_F = \frac{p_h^z}{p_h^z(\max)}$$
 in CM frame $\mathbf{p} = -\mathbf{q}, \quad -1 < x_F < 1$

6

Natural for hadron-hadron collisions

Light-cone fraction

Target fragmentation: QCD factorization

QCD factorization

Semi-inclusive hadron production in target region $\gamma^* + N \rightarrow X + h(\text{target})$

Trentadue, Veneziano 1994: p_T -integrated Collins 1998: Fixed p_T

QCD radiation: DGLAP, same as inclusive DIS

Predicts Q^2 -scaling for fixed $z, p_T \ll Q$

$$f_h(x, z, p_T) = \sum_{X'} \int d^2 k_T$$
$$\langle p \,|\, a^{\dagger}(k) \,|\, hX' \rangle \langle hX' \,|\, a(k) \,|\, p \rangle_{k^+ = xp^+}$$

[Naive expression: Gauge link, renormalization]

Fracture functions / Conditional PDFs

Probability to find hadron with z, p_T in target after removing parton with x

Universal, independent of hard process

Leading-twist structures, simpler than TMDs

Target fragmentation: Dynamics

hadronization

Information in fracture functions

Hadronization of nucleon with "hole" in partonic wave function

- \rightarrow Parton correlations in initial state
- \rightarrow Interactions in final state

Nonperturbative dynamics

Diquark correlations between valence quarks?

Chiral symmetry breaking interactions, $q\bar{q}$ pairs?

Challenge in model building: Interactions in both initial and final state

hadronization

[Rest frame view: Light-front wave function]

8

Target fragmentation: x, z dependence

x > 0.3

Remove parton from different configurations in wave fn

x > 0.3: remove valence quarks - "source" of wave fn

 $x \ll 0.1$: remove singlet quarks or gluons in multiparticle configurations

Hadronization of system after removal of valence or sea quark

Flavor relations for proton fragmentation in p, n

Hadronization after gluon removal? Largely unknown

z-dependence of target fragmentation

Counting rules $(1 - z)^n$ for leading hadron fragmentation [Frankfurt, Strikman 81]

Target fragmentation: Spin correlations

Target fragmentation in polarized DIS

Polarized DIS leaves remnant system with definite spin

Study spin dependence of target fragmentation

Fragmentation observables sensitive to spin

 $N - \Delta$ production ratio [Strikman 2013]

 Λ production: Polarization transfer [Ceccopieri, Mancusi 2012: Neutrino + DIS data]

Azimuthal asymmetries with beam and target spin: T-even/odd structures, as in current fragmentation SIDIS [Anselmino, Barone, Kotzinian 2011]

$$\frac{d\sigma}{dxdQ^2dzdp_Td\phi_h} = [\dots] + \sum_n [\dots] \cos n\phi_h + \sum_n [\dots] \sin n\phi_h$$

Many opportunities with JLab12 and EIC

Target fragmentation: P_T correlations

P_T of current fragmentation hadrons

Compounded from several mechanisms: Intrinsic k_T of partons in target QCD radiation, Sudakov-suppressed Fragmentation process

Separate different mechanisms?

P_T correlation measurements

 P_T correlations as function of rapidity distance

"Balancing" of current fragmentation P_T

Soft interactions: Simple interpretation

QCD: Radiation. Description to be developed. SCET methods?

Current-current or current-target correlations

Target fragmentation: P_T correlations from ChSB

Can be probed in current-target correlations Kinematics $\Delta y \approx 4, Q^2 \sim {\rm few}~{\rm GeV}^2$ limits pert radiation

Direct manifestation of chiral symmetry breaking in QCD!

Further modeling/simulations needed Schweitzer, Strikman, Weiss 2013 Nonperturbative gluon fields in QCD: Strong, localized ~0.3 fm, topologically charged ± 1

Vacuum state: Chiral condensate $\langle \bar{q}q \rangle \neq 0$

Nucleon state: $\bar{q}q$ pairs in partonic wave function

$$\rightarrow p_T(\text{sea}) \sim \rho^{-1} \gg p_T(\text{valence})$$

 $\rightarrow \bar{q}q$ correlations in sea

C. Weiss, EIC 2nd Detector Workshop, 6-8 Dec 2022

EIC measurements: Detector coverage

[Weiss et al 2021, prepared for EIC Yellow Report [INSPIRE]]

Pseudorapidity η covered in proton target fragmentation measurements at various x_F and p_T

Some target fragmentation hadrons between central detector $\eta \gtrsim 3.5$ and forward detectors $\eta \gtrsim 4.5$

Target fragmentation = inclusive measurements, desire full coverage

Target fragmentation coverage depends on proton beam energy

Summary

- Study of hadron structure in QCD will move from 1p densities to 2p correlations:
 → configurations, interactions?
- Target fragmentation and current-target correlations can provide unique access to parton correlations: Theory/modeling/simulations needed
- Nonperturbative $q\bar{q}$ correlations in nucleon sea from chiral symmetry breaking in QCD \leftrightarrow "origin of mass"
- Target fragmentation measurements with EIC require detector coverage "between" central $\eta < 3.5$ and far-forward $\eta > 4.5$ systems
- Connections with multiparton interactions in high-energy pp collisions at LHC: Very active field of study!

Target fragmentation: Baryon number transport

[Proton distribution does not contain diffractive peak $x_L \approx 1$]

ZEUS: S. Chekanov et al., JHEP 06, 074 (2009) [INSPIRE] H1: F. Aaron et al., Eur.Phys.J.C 68, 381 (2010) [INSPIRE]

15

C. Weiss, EIC 2nd Detector Workshop, 6-8 Dec 2022