Light-ion physics at EIC: Low-energy nuclear structure in high-energy processes

C. Weiss, JLab Theory Cake Seminar, 1 March 2023

Context
- Light ions at EIC
- Physics objectives
- Nuclear breakup measurements, esp. deuteron

Theory
- High-energy process ↔ low-energy structure
- Light-front nuclear structure

Applications
- Deuteron + spectator tagging: Free neutron
- Polarized deuteron vector/tensor
- Final-state interactions

Future
- A > 2 systems, EFT methods, …

Based on
JLab LDRD 2014/15 Theory-Experiment:
W. Cosyn, V. Guzey, M. Sargsian, M. Strikman,
D. Higinbotham, Ch. Hyde, P. Nadel-Turonski, K. Park

Theory development: M. Strikman, W. Cosyn

EIC physics/detector simulations, Yellow Report:
A. Jentsch, Zhoudunming Tu
Light ions: EIC capabilities

CM energy

\[\sqrt{s_{ep}} = 20 - 100 \ (140) \text{ GeV} \]

Lower by \(\sqrt{Z/A} \) for nuclei

High-energy processes: DIS, diffraction

Luminosity

Up to \(\sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \) (per nucleon)

Rare processes, exceptional configurations

Multivariable final states, polarization observables

Polarized ion beams

Polarized proton and 3He + possibly 7Li, 9Be

Possibly deuteron polarization at special energies

Forward detection of p, n, A’

Nuclear breakup, spectator tagging

Exclusive and diffractive processes

Coherent nuclear processes \(A \rightarrow A \)
Light ions: Physics objectives

Neutron structure
Flavor decomposition of quark PDFs/spin, GPDs, TMDs
Singlet-nonsinglet separation in QCD evolution for ΔG

Nuclear interactions
Hadronic: Short-range correlations, NN core, non-nucleonic DoF
Partonic: Nuclear modification of partonic structure
EMC effect $x > 0.3$, antishadowing $x \sim 0.1$
Quarks/antiquarks/gluons? Spin, flavor? Dynamical mechanism?

Coherent phenomena
Nuclear shadowing $x \ll 0.1$
Buildup of coherence, interaction with 2, 3, 4… nucleons?
\leftrightarrow Shadowing and saturation in heavy nuclei

Light ions: Measurements

Inclusive measurements

No information on initial-state nuclear configuration

Model effects in all configurations, average with nuclear wave function $\Psi^* \ldots \Psi$

Final-state interactions irrelevant, closure Σ_X

Basic measurements: D, 3He (pol), 4He, ...

Nuclear breakup detection - tagging

Potential information on initial-state nuclear configuration

Study effects in defined configurations, much simpler

Final-state interactions important, influence breakup amplitudes

New opportunities with EIC! New challenges for detection and theory!
Deuteron as simplest system

Nucleonic wave function simple, well known (p $\sim< 400$ MeV)

Neutron spin-polarized, some D-wave depolarization

Intrinsic Δ isobars suppressed by isospin = 0
[cf. large Δ component in 3He Bissey, Guzey, Strikman, Thomas 2002]

Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: spatial size \rightarrow interactions, S/D wave

Typical momenta \sim few 10 — 100 MeV

Proton tagging in fixed-target experiments at JLab:
CLAS BONuS 6/12 GeV: $p = 70$-150 MeV
ALERT, HALL A TDIS
Neutron tagging: CLAS12 BAND
Spectator tagging with colliding beams

Spectator moves forward in ion beam direction

Longitudinal momentum controlled by light-cone fraction:

Given in deuteron rest frame by

\[\frac{E_p + p_p^z}{M_D} \approx \frac{1}{2} \left(1 + \frac{p_p^z}{m} \right) \]

Conserved under boosts

Longitudinal momentum in detector

\[P_{\parallel p} \approx \frac{P_D}{2} \left(1 + \frac{p_p^z}{m} \right) \]

Advantages over fixed-target

No target material. Can detect spectators with rest frame momenta down to ~zero

Setup acts as magnetic spectrometer for protons, good acceptance and resolution

Neutron detection with Zero-Degree Calorimeter

Unique opportunity for EIC!
Theory: Tagged DIS cross section

\[
\frac{d\sigma}{dx dQ^2 (d^3 p_p/E_p)} = \text{[flux]} \left[F_{Td}(x, Q^2; \alpha_p, p_{pT}) + \epsilon F_{Ld}(\ldots) \right.
\]
\[
+ \sqrt{2\epsilon(1+\epsilon)} \cos \phi_p F_{LT,d}(\ldots) + \epsilon \cos(2\phi_p) F_{TT,d}(\ldots)
\]
\[
+ \text{spin-dep structures}\]

Semi-inclusive cross section \(e + d \rightarrow e' + X + p \) (or \(n \))

Collinear frame: Virtual photon and deuteron momenta collinear \(q \parallel p_d \), along z-axis

Proton recoil momentum described by light-cone components: \(p_p^+ = \alpha_p p_d^+ \), \(p_{pT} \)
Related in simple way to rest-frame 3-momentum

No assumption re composite nuclear structure, \(A = \sum N \), or similar!

Special case of target fragmentation: Fracture function

[Trentadue, Veneziano 93; Collins 97]
Theory: Composite picture

QM description

Nucleon states, nuclear wave function

Nucleons are on mass shell $p^2 = m^2$, but intermediate state is off energy-shell — energy different from initial/final state

Energy off-shellness depends on choice of “time” variable

High-energy limit $s \rightarrow \infty$

Usual time x^0: Energy off-shellness grows with s

Light-front time $x^+ = x^0 + x^3$: Off-shellness remains finite!

Light-front quantization

Nucleus described by wave function at fixed light-front time $x^+\langle pn \mid d \rangle = \Psi(\alpha_p, p_{pT})$

Contains low-energy nuclear structure, just organized in manner suitable for high-energy processes

Enables composite description of high-energy scattering on nucleus: [Frankfurt, Strikman 80s]

Separation of nucleus and nucleon structure

Use of on-shell nucleon amplitudes/cross sections, measured in eN scattering

Limited role of non-nucleonic DoF
Theory: Light-front quantization

Analogue: Teeing up a golf ball

Light-front quantization:
Low-energy structure aligned with direction of high-energy process

Other quantization schemes:
Low-energy structure not aligned with direction of high-energy process
Theory: Nuclear light-front wave function

LF bound state equation

Construct NN interaction at fixed LF time x^+

Schrödinger (V) or Lippmann-Schwinger (T) type equations

Technical challenges: Rotational invariance, Fock truncation, $A > 2$

Approximation constructed from nonrelativistic wave function ($A = 2$)

Rotationally symmetric representation of LF variables:
$k(\alpha_p, p_{pT}) = 3$-momentum in pn CM frame [Terentev 1976]

Match LF and nonrelativistic wave functions:
$\Psi_{\text{LF}}(\alpha_p, p_{pT}) = N \Psi_{\text{nonrel}}(k)$

Approximation safe for $k \lesssim 300$ MeV, possibly larger

Imports knowledge of NN interactions in non-relativistic NMBT
Impulse approximation

Spectator and DIS final state evolve independently

\[
d\sigma[ed \to e'Xp] = S_d(\alpha_p, p_{pT}) \, d\Gamma_p \times d\sigma[en \to e'X]
\]

\[
S_d(\alpha_p, p_{pT}) = \text{Flux} \times |\Psi_{LF}(\alpha_p, p_{pT})|^2 \quad \text{spectral function}
\]

Final-state interactions

Part of DIS final state interacts with spectator, transfers momentum

Requires theoretical modeling

Strategy

Use measured spectator momentum to control nuclear binding in initial state, interactions in final state

“Select configurations” in nucleus

For DIS in scaling regime \(\nu, Q^2 \to \infty \): These approximations are consistent with leading twist factorization of \(\sigma[en, p_{pT}] \), partonic sum rules, etc.
Applications: Free neutron structure

Deuteron wave function has pole in unphysical region describing pn configurations of size $\to \infty$

Universal feature: Bethe-Peierls radius, asymptotic S-wave normalization

At pole nucleons are free, no interactions

Can be reached by analytic continuation in momentum

Light-front: Pole in transverse momentum p_{pT}^2

Extraction procedure

[Sargsian, Strikman 2005]

Measure proton-tagged cross section at fixed α_p as function of $p_{pT}^2 > 0$

Divide data by pole term of spectral function

Extrapolate to pole position $p_{pT}^2 \to -a_T^2 < 0$

Experimentally challenging: Functions depend strongly on p_{pT} — resolution!
Applications: Free neutron structure

EIC simulations: p and n tagging, pole extrapolation, uncertainty analysis, validation

Tagged cross section measured with excellent coverage

Significant uncertainties in evaluation of pole factor due to p_T resolution

Pole extrapolation realistic for proton spectator, exploratory for neutron sp.

Jentsch, Tu, Weiss, PRC 104, 065205 (2021)

EIC Yellow Report 2021
Applications: Polarized neutron structure

Neutron polarization in polarized deuteron

\[S + D \text{ wave, depolarization} \]

Depends on momentum of \(pn \) configuration

Control neutron polarization with tagging

D wave drops out at \(p_{pT} = 0 \):
Pure S-wave, neutron 100% polarized

D wave dominates at \(p_{pT} \sim 400 \text{ MeV} \):
Neutron polarized opposite to deuteron spin!

Effects require proper light-front spin structure:
Light-front helicity states, Melosh rotations
[Frankfurt, Strikman 1983]

EIC prospects

Physics simulations: 2014-15 JLab LDRD

Cosyn, Weiss PLB799 (2019) 135035; PRC102 (2020) 065204
Vector and tensor polarization

Spin-1 density matrix $\rho_{\lambda'\lambda}(S, T)$

3 vector, 5 tensor parameters

Spin observables

U + S + T cross section

ϕ_p-dependent structures

U + S cross section same as for spin-1/2

Bacchetta et al 2007

T cross section has 23 new structures, some with ϕ_p-dep unique to T polarization

Time-reversal odd structures: Zero in impulse approximation, serve as tests of FSI

Cosyn, Weiss, PRC102 (2020) 065204 + in preparation (2023)
Applications: Final-state interactions

Part of final state of high-energy process interacts with spectator

Changes spectator momentum distribution, no effect on total cross section (closure)

What final states are produced? How do they interact?
Depends on specifics of high-energy process

Final-state interactions in DIS at intermediate x (~ 0.1)

Space-time picture in deuteron rest frame

$\nu \gg$ hadronic scale: Large phase space for hadron production

“Fast” hadrons $E_h = \mathcal{O}(\nu)$ — current fragmentation region:
Formed outside nucleus, interaction with spectator suppressed

“Slow” hadrons $E_h = \mathcal{O}(1 \text{ GeV}) \ll \nu$ — target fragmentation region:
Formed inside nucleus, interact with hadronic cross sections
Source of FSI in tagged DIS!

Picture respects QCD factorization of target fragmentation: FSI only modifies soft breakup of target, no long-range rapidity correlations

[Deuteron rest frame view]

[Resonance region: Cosyn, Sargsian Melnitchouk 2011/14]
Applications: Final-state interactions

Studied distributions of slow hadrons in DIS on nucleon — target fragmentation

Described by light-cone variables
Constrained by light-cone momentum conservation

Used experimental distributions: HERA, EMC, neutrino DIS

Need better data on target fragmentation: JLab12, EIC!

Momentum distribution of slow hadrons in nucleon rest frame: Cone in virtual photon direction
Applications: Final-state interactions

FSI calculation

- Evaluated scattering of slow hadrons from spectator
- QM description: IA + FSI amplitudes, interference
- FSI amplitude has imaginary and real part: Absorption and refraction

Momentum and angular dependence

- $p_p \lesssim 300$ MeV: IA x FSI interference, absorptive, weak angular dependence
- $p_p \gtrsim 300$ MeV: $|FSI|^2$, refractive, strong angular dependence

Results used in EIC simulations, analysis of JLab12 BAND experiment

FSI angular dependence in deuteron rest frame

Strikman, Weiss PRC97 (2018) 035209
Applications: More deuteron studies with EIC

Tagged diffractive DIS on deuteron

Interference of diffractive DIS on p and n

Explore dynamics of nuclear shadowing in A = 2 system

Tagged EMC effect in deuteron

Use spectator momentum to fix momentum/size of pn configuration

Explore configuration dependence of EMC effect

Tagged tensor-polarized DIS

Use spectator momentum to fix D/S ratio and maximize tensor polarization

Achieve tensor-polarized asymmetry $A_{zz} = O(1)$ as opposed to $\ll 1$ without tagging

Guzey, Strikman, Weiss, in progress

Jentsch, Tu, Weiss, in progress

Cosyn, Weiss, in progress
Future: A > 2 nuclei

Will be available at EIC, esp. 3He(pol)

Contain NN pairs with various I, J, LS quantum numbers:
Study nuclear interaction effects in different configurations

Light-front structure more complex:
Angular momentum coupling, LF \leftrightarrow nonrelativistic correspondence
Lev 1990s; Salme et al. 2000s

Nuclear breakup processes A > 2

2-body: $e + ^{3}$He \rightarrow $e' + X + d$

3-body: $e + ^{3}$He \rightarrow $e' + X + pn, pp$

Breakup more complex: Nuclear interactions in final state,
distorted waves, wave function overlap factors

Needs extensive nuclear structure input!

3He: Ciofi, Kaptari, Scopetta e al 2000+
NN interactions can be generated from ChiralEFT

Scattering amplitude $T \rightarrow$ Potential V

Parametric approach: Systematic, controlled uncertainties, organizes N-body forces, current operators

Standard in low-energy nuclear structure
Weinberg; Kaplan et al.; Epelbaum, Meißner et al; Van Kolck et al 1990s/2000s
Schiavilla, Pastore, Piarulli et al 2010s
Machleidt et al. 2000s

Can be extended to light-front NN interactions
Planned: F. Vera, Weiss

Technical questions: Rotational invariance, Fock expansion with chiral counting

Applications: Nuclear pions \rightarrow antishadowing
Nuclear modifications of PDFs through 2-body operators

Matching with Lattice QCD possible
Summary

Light ion physics most interesting and novel part of EIC science program 😊

Nuclear breakup measurements permit control of nuclear configuration in high-energy process and differential analysis of nuclear effects — new opportunities, new challenges for theory

Light-front formulation of nuclear structure essential for separating low-energy nuclear structure and high-energy process

Unique applications of deuteron tagging at EIC: Free neutron, tagged EMC effect, diffraction, vector and tensor polarization

Extension of breakup measurements to A > 2 require substantial nuclear structure input: Spectral functions, decay amplitudes for specific final states, final-state interactions

Prospect of EFT formulation of light-front nuclear structure: Systematic approach

Rising program — many opportunities, long-term prospects

Synergies with JLab12 + beyond