Angular momentum and density

Energy-momentum tensor and AM operators

AM light-front density

Transition angular momentum $B \rightarrow B'$

Definition through light-front density

$N \rightarrow \Delta$ transition AM - isovector

Dynamical properties

Separation of spin and orbital AM

Peripheral AM density $N \rightarrow N$ from chiral dynamics

Based on

J.-Y. Kim, H.-Y. Won, J. Goity, C. Weiss,
Phys. Lett. B 844, 138083 (2023) [INSPIRE]

C. Granados, C. Weiss,
AM: Operators

Invariance of action → conserved local currents → charges

Space-time translations → EM tensor \(T^{\mu\nu}(x) \) → total momentum \(P^i = \int d^3x \, T^{0i}(x) \)

Rotations → AM tensor \(J^{\mu\alpha\beta}(x) \) → total AM \(J^i = \frac{1}{2} \epsilon^{ijk} \int d^3x \, T^{jk}(x) \)

AM tensor

\[
J^{\mu\alpha\beta} = J_q^{\mu\alpha\beta} + J_g^{\mu\alpha\beta}
\]

\[
J_q^{\alpha\beta}(x) = x^\alpha T_q^{\mu\beta}(x) - x^\beta T_q^{\mu\alpha}(x)
\]

Quark/gluon AM from EMT

\[
T_q^{\alpha\beta}(x) = \sum_f \bar{\psi}_f(x) \gamma^{[\alpha i} \nabla^{\beta]} \psi_f(x)
\]

Quark EMT (← GPDs)

Here: Use symmetric part of quark EMT → total quark AM \(J_q \)

Later: Non-symmetric EMT → separate orbital and spin quark AM \(L_q, S_q \)

Definitions see e.g. Lorce, Mantovani, Pasquini 2017

Only total EMT is conserved, not individual quark/gluon/flavor contributions
AM: EMT matrix elements

\[\langle N' | T^{\alpha\beta} | N \rangle \]

Invariant form factors
\[A, B, D, \bar{C}(t) \]

Light-front components
\[T^{++}, T^{+i}, T^{ij}(\Delta_T) \]
\((\Delta^+ = 0 \text{ frame})\)

3D components
\[T^{00}, T^{0k}, T^{kl}(\Delta) \]
\((\Delta^0 = 0 \text{ frame})\)

AM can be evaluated in any representation

e.g. GPDs → \[A + B \rightarrow J \]

Ji 1996

GPDs → \[[A + B](t) \rightarrow T^{0k}(r) \text{ density} \]

Polyakov 2003

Each representation has its uses/advantages

Here: Use representation by LF components in \(\Delta^+ = 0 \text{ frame} \)
\[\rightarrow \text{Generalization} \langle B' | \ldots | B \rangle \]
AM: Transverse density

\[p'^+ = p^+, \quad \Delta^+ = 0, \quad \Delta_T \neq 0 \]

\[T^{+i}(\Delta_T | \sigma', \sigma) = \langle p', \sigma' | T^{+i}(0) | p, \sigma \rangle \]

\[T^{+i}(b | \sigma', \sigma) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i \Delta_T b} \langle p', \sigma' | T^{+i}(0) | p, \sigma \rangle \]

\[2S^z(\sigma', \sigma) J_q = \frac{1}{2p^+} \int d^2 b \left[b \times T^{+T}(b | \sigma', \sigma) \right]^z \]

\[J_q + J_g = \frac{1}{2} \]

Nucleon spin states: Light-front helicity states, prepared by LF boost from rest frame

\[\Delta^+ = 0 \] frame

EMT transition matrix element

Transverse coordinate representation

AM transverse density and integral

Spin sum rule (quarks + gluons)
Advantages of LF formulation

LF density: Boost-invariant/covariant, frame independent, appropriate for relativistic systems

Mechanical interpretation: \(\mathbf{r} \times \mathbf{p} \) in transverse plane

Relation to invariant form factors:

\[
\left[\mathbf{b} \times \mathbf{T}^+T(b \mid \sigma', \sigma) \right]^z = 2S^z(\sigma', \sigma) \frac{b}{2} \frac{d}{db} \left[\rho_A(b) + \rho_B(b) \right]
\]

Can be generalized to transitions \(B \rightarrow B' \)

LF quantization: Transverse motion Galilean - nonrelativistic. Transverse localization does not depend on mass of state (cf. 3D Breit frame densities)
Transition AM: Definition

\[m' \neq m \quad B = \{ S, S_3, I, I_3 \}, \quad B' = \{ S', S'_3, I', I'_3 \} \]

\[p'^+ = p^+, \quad \Delta^+ = 0, \quad \Delta_T \neq 0, \quad \Delta^- = \frac{m'^2 - m^2}{p^+} \neq 0 \]

\[T^{+i}(\Delta_T | B', B) = \langle p', B' | T^{+i}(0) | p, B \rangle \]

\[2S^z(B', B) J_{B \rightarrow B'} = \frac{1}{2p^+} \int d^2b \left[b \times T^{+T}(b | B', B) \right]^z \]

Baryon states, spin/isospin quantum numbers

\[\Delta^+ = 0 \] frame

Transition matrix element
isoscalar/isovector operator

Transition AM \(B \rightarrow B' \)

Kinematic spin dependence factored out:
Reduced matrix element

Transitions as allowed by quantum numbers of states:
Isoscalar/isovector component of quark operator

Kim, Won, Goity, Weiss 2023
Transition AM: \(N \rightarrow \Delta \)

\((T^V)^{\alpha \beta} \equiv T^{\alpha \beta}_u - T^{\alpha \beta}_d\)

"Isovector quark EMT" : New operator, not conserved, not related to symmetry

\[\langle B', p | (T^V)^{\alpha \beta} | B, p \rangle \rightarrow J_{B \rightarrow B'}\]

Analysis using 1/Nc expansion

1/\(N_c\) expansion of 3D multipole form factors of EMT in \(\Delta^0 = 0\) frame

Light-front components from “matching” in frame where \(\Delta^+ = 0\) and \(\Delta^0 = 0\)

LO relations: \(J^V_{p \rightarrow p} = \frac{1}{\sqrt{2}} J^V_{p \rightarrow \Delta^+}\)

Numerical estimates using Lattice QCD results for \(J^V_{p \rightarrow p} \equiv J^{u-d}\) in proton

<table>
<thead>
<tr>
<th>Lattice QCD</th>
<th>(J^S_{p \rightarrow p})</th>
<th>(J^S_{\Delta^+ \rightarrow \Delta^+})</th>
<th>(J^V_{p \rightarrow p})</th>
<th>(J^V_{p \rightarrow \Delta^+})</th>
<th>(J^V_{\Delta^+ \rightarrow \Delta^+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9] (\mu^2 = 4) GeV(^2)</td>
<td>0.33*</td>
<td>0.33</td>
<td>0.41*</td>
<td>0.58</td>
<td>0.08</td>
</tr>
<tr>
<td>[10] (\mu^2 = 4) GeV(^2)</td>
<td>0.21*</td>
<td>0.21</td>
<td>0.22*</td>
<td>0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>[11] (\mu^2 = 4) GeV(^2)</td>
<td>0.24*</td>
<td>0.24*</td>
<td>0.23*</td>
<td>0.33</td>
<td>0.05</td>
</tr>
<tr>
<td>[12] (\mu^2 = 1) GeV(^2)</td>
<td>–</td>
<td>–</td>
<td>0.23*</td>
<td>0.33</td>
<td>0.05</td>
</tr>
<tr>
<td>[13] (\mu^2 = 4) GeV(^2)</td>
<td>–</td>
<td>–</td>
<td>0.17*</td>
<td>0.24</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Kim, Won, Goity, Weiss 2023
Dynamics: Orbital and spin AM

\[T_{q}^{\alpha\beta} = T_{q}^{\{\alpha\beta\}} + T_{q}^{[\alpha\beta]} \]

\[\bar{\psi}(x) \gamma^{[\alpha i} \nabla^{\beta]} \psi(x) = -2\epsilon^{\alpha\beta\mu\nu} \partial_{\mu} [\bar{\psi}(x)\gamma_{\nu}\gamma_{5}\psi(x)] \]

\[J_{q}^{\mu\alpha\beta} = L_{q}^{\mu\alpha\beta} + S_{q}^{\mu\alpha\beta} \]

\[L_{q}^{\mu\alpha\beta}(x) = x^{\alpha}T_{q}^{\mu\beta}(x) - x^{\beta}T_{q}^{\mu\alpha}(x) \]

\[S^{\alpha\beta\mu} = \frac{1}{2} \epsilon^{\alpha\beta\mu\nu} \bar{\psi}(x)\gamma_{\nu}\gamma_{5}\psi(x) \]

“Kinetic” EMT, non-symmetric

Separate orbital and spin AM operators

Antisymmetric part =

total derivative of axial current
(for each flavor)

Ji 1996. Discussion in Lorce, Mantovani, Pasquini 2017

Transition AM \(B \rightarrow B' \) can be extended to separate orbital and spin AM

AM densities depend on choice of EMT (kinetic, improved)
Charge \(J_{q} \) independent of definition

Explore orbital—spin separation in dynamical models
Peripheral AM density from chiral dynamics

Densities at $b = \mathcal{O}(M_{\pi}^{-1})$ governed by chiral dynamics

Computed using ChEFT: Systematic, model-independent

Pion EMT derived from Chiral Lagrangian + Noether Thm, uniquely determined

Peripheral densities from 2-pion cut of EMT matrix elements, evaluated using dispersion relation

Peripheral AM density $N \rightarrow N$

$L^z(b)$ leading — 2-pion cut

$S^z(b)$ suppressed — only 3-pion cut

AM density in nucleon’s chiral periphery is mainly orbital

Granados, Weiss, 2019
Peripheral AM density from chiral dynamics

$L^z(b)$ decays exponentially

$L^z(b) \sim e^{-2M_\pi b} \times \text{function}(M_\pi, m; b)$

$L^z(b)$ similar to charge density $\rho_1(b)$

Contributions of N and Δ intermediate states have opposite sign; cancel in large-N_c limit → correct $1/N_c$ scaling of peripheral density

Disclaimer: LO ChEFT result is not quantitatively realistic, relevant only at $b \sim$ few times M_π^{-1}. where densities are extremely small. Realistic results can be obtained with dispersive improvement

Scalar and vector form factors: Alarcon, Weiss, 2017+
Peripheral AM density from chiral dynamics

Light-front formulation of ChEFT process:
Sequence in LF time x^+

Transition $N \rightarrow \pi N, \pi \Delta$ described by chiral LF wave function:

$$\Psi_{N\rightarrow\pi N}(y, k_T | \sigma', \sigma) = \frac{\langle \pi N | \mathcal{L}_{\text{chiral}} | N \rangle}{M_{\pi N}^2 - m_N^2}$$

Peripheral density as LF wave function overlap (transverse coordinate representation, $r = b/\bar{y}$)

$$L^z(b) = \int \frac{dy}{y\bar{y}} \sum_{\sigma'} \Psi^*_{N\rightarrow\pi N}(y, r_T | \sigma', \sigma) \left[r_T \times (-i) \frac{\partial}{\partial r_T} \right] \Psi_{N\rightarrow\pi N}(y, r_T | \sigma', \sigma) + (N \rightarrow \pi \Delta)$$

First-quantized representation

AM operator is quantum mechanical angular momentum

Granados, Weiss, 2019
Peripheral AM density from chiral dynamics

\[\sigma = 1/2 \]

\[\sigma = +1/2 \]

\[L_z = 1,0 \]

\[L_z = 2,1,0,-1 \]

\[\Delta \]

\[\Delta \]

\[N \]

\[N \]

\[z \]

\[z \]

\[b \]

\[\rightarrow \]

“Story” of peripheral AM

Original nucleon with spin \(\sigma = +1/2 \)

Transition to intermediate \(\pi N/\pi \Delta \) state with orbital AM \(L_z \) \(\leftarrow \) intermediate \(N/\Delta \) spin \(\sigma' \)

Peripheral AM given by \(L_z \), summed over all intermediate states

Light-front representation provides simple mechanical picture

Equivalent to result obtained from 2-pi cut in invariant EMT form factors

Based on ChEFT = “true” large-distance dynamics of QCD
EMT matrix elements can be characterized in several representations, each with distinct uses/advantages:

- **Invariant form factors** → Analytic properties
- **Light-front components in \(\Delta^+ = 0 \) frame** → Densities, mechanical interpretation, generalization to transitions \(B \to B' \)
- **3D components in \(\Delta = 0 \) frame** → Multipoles, \(1/N_c \) expansion

AM definition as light-front density can be generalized to \(B \to B' \) transitions

\(N \to \Delta \) transition AM pure isovector, connected with \(J^{u-d} \) in nucleon in large-\(N_c \) limit

Peripheral AM density at \(b = \mathcal{O}(M_\pi^{-1}) \) can be computed in Chiral EFT
Peripheral \(N \to N \) isoscalar AM density mostly orbital, spin density suppressed