Two-photon exchange processes in e+-N scattering in resonance region: Analysis using 1/Nc expansion

C. Weiss (JLab), with J. Goity, JLab Positron WG Meeting 09 Aug 2023

Jefferson Lab

Computed target normal single-spin asymmetry from two-photon exchange (TPE) in inclusive scattering $eN \rightarrow e'X$ (and elastic scattering $eN \rightarrow e'N$) in resonance region $\sqrt{s} \leq 1.5$ GeV

Used systematic method based on 1/Nc expansion of QCD: Parametric expansion, controlled accuracy, N and Δ states related by spin-flavor symmetry

Planning several applications/extensions relevant to JLab positron program: Beam normal spin asymmetry, e+- charge asymmetry, duality DIS — resonance region

J.L. Goity, C. Weiss, C.T. Willemyns, Phys. Lett. B 835, 137580 (2022) [INSPIRE]J.L. Goity, C. Weiss, C.T. Willemyns, Phys. Rev. D 107, 094026 (2023) [INSPIRE]

Two-photon exchange

TPE has become field or research in its own right

Elastic ep cross section: TPE as radiative correction, involves Re(TPE) and Im(TPE) Much theoretical work, situation still inconclusive

Direct measurements: $e^{\pm}N$ charge asymmetry, $eN(\uparrow)$ target normal spin asymmetries

Target normal single-spin asymmetry

$$A_N = \frac{\sigma \uparrow - \sigma \downarrow}{\sigma \uparrow + \sigma \downarrow}$$

Zero at $O(\alpha^2)$, pure $O(\alpha^3)$ effect

Interference on one- and two-photon exchange Also contribution from Bethe-Heitler - Virtual Compton interference

Involves only Im(TPE): Finite integral, on-shell amps

Inclusive or elastic scattering

Can be measured in wide kinematic range: Low-energy — resonance region — DIS

Normal spin asymmetry in inclusive eN scattering

Theoretical calculations

DIS region: QCD mechanism based on vacuum structure. Afanasev, Strikman, Weiss 2008 Various pQCD-based mechanisms. Metz, Schlegel, Goeke 2006; Metz et al. 2012; Schlegel 2013 Large variations $A_N \sim 10^{-4} - 10^{-2}$

 $A_N(\text{DIS}) \ll A_N(\text{low-energy elastic})$ because anomalous magnetic moment of quark \ll nucleon

How does transition from low-energy to DIS regime happen? Need to explore resonance region!

Experiments

HERMES 2014: p target, W > 2 GeV, $A_N \sim 10^{-2}$

JLab Hall A Katich et al. 2014: 3He target, W = 1.7-2.9 GeV, $A_N \sim 10^{-2}$

Proposal JLab Hall A Grauvogel, Kutz, Schmidt 2021: p target, E_e = 2.2, 4.4, 6.6 GeV

Resonance region

 N, Δ, N^* + nonresonant πN as final states and intermediate states in TPE Need to combine contributions of channels at amplitude level — cancellations? Need transition currents $\langle \Delta | J | N \rangle$, $\langle \Delta | J | \Delta \rangle$ etc.

Develop systematic approach based on 1/Nc expansion!

1/Nc expansion: Basics

S = I = 1/2, 3/2

Large- N_c limit of QCD

Semiclassical limit of QCD 'tHooft 1974, Witten 1979

Hadron masses, couplings, matrix elements scale in N_{c} "Organization" of non-perturbative dynamics

Emerging dynamical spin-flavor symmetry $SU(2N_f)$ Baryons in multiplets with masses $O(N_c)$, splittings $O(1/N_c)$ Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993

 $N \to N \text{ and } N \to \Delta \text{ transitions related by symmetry:}$ $\langle \Delta | \mathcal{O} | N \rangle = [\text{symmetry factor}] \times \langle N | \mathcal{O} | N \rangle$

$1/N_c$ expansion of hadronic matrix elements

Parametric expansion: Systematic, predictive, controlled accuracy

Applied to current matrix elements, hadronic amplitudes Vector and axial currents: Fernando, Goity 2020

1/Nc expansion: Currents

Generators of spin-flavor group algebra: $\hat{S}^i, \hat{I}^a, \hat{G}^{ia}$

Matrix elements between ground-state baryons from symmetry:

 $\langle B(S', S'_3, I'_3) | \dots | B(S, S_3, I_3) \rangle = \operatorname{fun}(N_c) \times \operatorname{Clebsches} \quad S, S' = 1/2, 3/2 \quad B = N, \Delta$

EM current operator expressed through generators:

$$\begin{split} J_{S}^{\mu}(q) &= G_{E}^{S}(q^{2}) \frac{1}{2} g^{\mu 0} - i \frac{1}{2} \frac{G_{M}^{S}(q^{2})}{\Lambda} \epsilon^{0\mu i j} q^{i} \hat{S}^{j}, \\ J_{V}^{\mu a}(q) &= G_{E}^{V}(q^{2}) \hat{I}^{a} g^{\mu 0} - i \frac{6}{5} \frac{G_{M}^{V}(q^{2})}{\Lambda} \epsilon^{0\mu i j} q^{i} \hat{G}^{j a}, \\ J_{\rm EM}^{\mu}(q) &= J_{S}^{\mu}(q) + J_{V}^{\mu 3}(q), \end{split}$$

 $q^0 = \mathcal{O}(N_c^{-1}), \ q^i = \mathcal{O}(N_c^0)$ momentum transfer

 $G^{V,S}_{E,M}(q^2)$ form factors

Expresses parametric expansion in $1/N_c$

Charges/form factors fixed from $N \rightarrow N$ matrix elements

Predicts $N \rightarrow \Delta$ and $\Delta \rightarrow \Delta$ matrix elements

1/Nc expansion: Kinematic regimes

Kinematic variables in inclusive electron scattering

$$e(k) + N(p) \rightarrow e(k') + X(p')$$

$$s = (k + p)^{2}$$

$$q^{2} = (k - k')^{2}$$

$$M_{X}^{2} = p'^{2} = (p + q)^{2}$$
final-state mass

Kinematic regimes in 1/Nc expansion

	Energy regime	$1/N_c$ expansion regime	Channels open	Final states possible	
Ι	$m_N < \sqrt{s} < m_\Delta$	$\sqrt{s} - m_N \sim N_c^{-1}, \ k \sim N_c^{-1}$	N	elastic	"low
ΙΙ	$m_{\Delta} < \sqrt{s} \ll m_{N*}$	$\sqrt{s} - m_N \sim N_c^{-1}, \ k \sim N_c^{-1}$	N, Δ	elastic or inelastic	energies"
III	$m_{\Delta} < \sqrt{s} \lesssim m_{N*}$	$\sqrt{s} - m_N \sim N_c^0, k \sim N_c^0$	$N, \Delta, N^*(\mathrm{suppr})$	elastic or inelastic	"intermediate energies"
$k = (s - m^2)/2\sqrt{s}$ CM momentum					

Expansion can be applied in different kinematic regimes: Different "focus", reach, accuracy Systematic calculation, defined accuracy, could be improved by higher-order corrections Non-resonant πN states suppressed in $1/N_c$ relative to Δ

1/Nc expansion: Calculation

Calculate $eB \rightarrow e'B'$ amplitudes for $B, B' = N, \Delta$ with $1/N_c$ -expanded currents

Integrate over phase space of intermediate state in TPE

Sum over intermediate and final states

Project out normal-spin dependent part of cross section

Results: A_N at intermediate energies

 A_N at intermediate energies (regime III) LO 1/Nc expansion result

Valid for 1.23 GeV
$$<\sqrt{s} \lesssim$$
 1.5 GeV
or 0.3 GeV $< k \lesssim$ 0.6 GeV,
and $\theta \sim \pi/2$ "large angle"

 $A_N \sim 10^{-2}$ predicted in intermediate-energy regime

Large contribution of Δ final states at angles $\theta \sim \pi/2$, could be tested experimentally!

LO 1/Nc expansion result: All transition currents magnetic isovector G^{ia} , simple structure. Electric currents come in at higher orders

 A_N is overall isovector: A_N (proton) = $-A_N$ (neutron)

Results: A_N at low energies

 A_N rises steeply as function of energy above Δ threshold (here: CM momentum k) Large contribution of Δ final states

Results: Real photon emission

 A_N in inclusive eN scattering also receives contribution from real photon emission channel

Interference of Virtual Compton Scattering and Bethe-Heitler amplitudes

Im (VCS) $\neq 0$ above Δ threshold

 $1/N_c$ expansion: Real photon emission process suppressed by $1/N_c$ relative to TPE

 $1/N_c$ expansion guides analysis and interpretation of TPE processes

Summary

Computed/analyzed A_N from TPE in eN scattering in resonance region in systematic approach based on $1/N_c$ expansion

 A_N predicted to be ~ 10^{-2} , should be measurable

Separate contributions of N and Δ final states in spin-dependent cross section (= numerator)

Energy and angular dependence of spin-dependent cross section and A_N

Isospin dependence proton-neutron of spin-dependent cross section and A_N

Transition from resonance to DIS region - qualitative changes?

Possible theoretical improvements

Higher-order $1/N_c$ corrections in intermediate-energy regime $\rightarrow N^*$ states, real γ emission Combined chiral and $1/N_c$ expansion in low-energy regime $\rightarrow \pi N$ states

Applications and extensions

 $1/N_c$ expansion enables systematic approach to eN scattering in resonance region: Organizes kinematics, channels $\Delta \leftrightarrow \pi N$, currents, calculation

Applications to TPE and positron physics

Beam normal spin asymmetry: Pure TPE effect, $\propto m_{\text{lepton}}$, enhanced by collinear logarithm

Charge asymmetry of $e^{\pm}N$ cross section: Involves also Re(TPE), obtained dispersion integral

Electroweak processes, γZ exchange

Applications to hadronic physics

Transition between resonance and DIS regions, quark-hadron duality

Spin effects in intermediate-energy *eN* scattering