Two-photon exchange processes in e+-N scattering in resonance region: Analysis using 1/Nc expansion

C. Weiss (JLab), with J. Goity, JLab Positron WG Meeting 09 Aug 2023

Computed target normal single-spin asymmetry from two-photon exchange (TPE)
in inclusive scattering $e N \rightarrow e^{\prime} X$ (and elastic scattering $e N \rightarrow e^{\prime} N$) in resonance region $\sqrt{s} \lesssim 1.5 \mathrm{GeV}$

Used systematic method based on 1/Nc expansion of QCD: Parametric expansion, controlled accuracy, N and Δ states related by spin-flavor symmetry

Planning several applications/extensions relevant to JLab positron program:
Beam normal spin asymmetry, e+- charge asymmetry, duality DIS - resonance region
J.L. Goity, C. Weiss, C.T. Willemyns, Phys. Lett. B 835, 137580 (2022) [INSPIRE]
J.L. Goity, C. Weiss, C.T. Willemyns, Phys. Rev. D 107, 094026 (2023) [INSPIRE]

Two-photon exchange

TPE has become field or research in its own right

Elastic $e p$ cross section: TPE as radiative correction, involves $\operatorname{Re}(T P E)$ and $\operatorname{Im}(T P E)$ Much theoretical work, situation still inconclusive

Direct measurements: $e^{ \pm} N$ charge asymmetry, $e N(\uparrow)$ target normal spin asymmetries

Target normal single-spin asymmetry

\times

$e N \rightarrow e^{\prime} X \quad$ inclusive
$e N \rightarrow e^{\prime} N \quad$ elastic
$A_{N}=\frac{\sigma \uparrow-\sigma \downarrow}{\sigma \uparrow+\sigma \downarrow}$

Zero at $O\left(\alpha^{2}\right)$, pure $O\left(\alpha^{3}\right)$ effect
Interference on one- and two-photon exchange
Also contribution from Bethe-Heitler - Virtual Compton interference

Involves only Im(TPE): Finite integral, on-shell amps

Inclusive or elastic scattering

Can be measured in wide kinematic range:
Low-energy - resonance region- DIS

Normal spin asymmetry in inclusive eN scattering

Theoretical calculations

DIS region: QCD mechanism based on vacuum structure. Afanasev, Strikman, Weiss 2008 Various pQCD-based mechanisms. Metz, Schlegel, Goeke 2006; Metz et al. 2012; Schlegel 2013 Large variations $A_{N} \sim 10^{-4}-10^{-2}$
$A_{N}($ DIS $) \ll A_{N}$ (low-energy elastic) because anomalous magnetic moment of quark \ll nucleon
How does transition from low-energy to DIS regime happen? Need to explore resonance region!

Experiments

HERMES 2014: p target, $W>2 \mathrm{GeV}, A_{N} \sim 10^{-2}$
JLab Hall A Katich et al. 2014: 3He target, $W=1.7-2.9 \mathrm{GeV}, A_{N} \sim 10^{-2}$
Proposal JLab Hall A Grauvogel, Kutz, Schmidt 2021: p target, $E_{e}=2.2,4.4,6.6 \mathrm{GeV}$

Resonance region

$N, \Delta, N^{*}+$ nonresonant πN as final states and intermediate states in TPE
Need to combine contributions of channels at amplitude level - cancellations?
Need transition currents $\langle\Delta| J|N\rangle,\langle\Delta| J|\Delta\rangle$ etc.
Develop systematic approach based on 1/Nc expansion!

1/Nc expansion: Basics

Large $-N_{c}$ limit of QCD
Semiclassical limit of QCD 'tHooft 1974, Witten 1979

Hadron masses, couplings, matrix elements scale in N_{c}
"Organization" of non-perturbative dynamics

Emerging dynamical spin-flavor symmetry $S U\left(2 N_{f}\right)$
Baryons in multiplets with masses $O\left(N_{c}\right)$, splittings $O\left(1 / N_{c}\right)$
Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993
$N \rightarrow N$ and $N \rightarrow \Delta$ transitions related by symmetry:
$\langle\Delta| \mathcal{O}|N\rangle=$ [symmetry factor] $\times\langle N| \mathcal{O}|N\rangle$
$1 / N_{c}$ expansion of hadronic matrix elements
Parametric expansion: Systematic, predictive, controlled accuracy
Applied to current matrix elements, hadronic amplitudes
Vector and axial currents: Fernando, Goity 2020

1/Nc expansion: Currents

Generators of spin-flavor group algebra: $\hat{S}^{i}, \hat{I}^{a}, \hat{G}^{i a}$
Matrix elements between ground-state baryons from symmetry:

$$
\left\langle B\left(S^{\prime}, S_{3}^{\prime}, I_{3}^{\prime}\right)\right| \ldots\left|B\left(S, S_{3}, I_{3}\right)\right\rangle=\text { fun }\left(N_{c}\right) \times \text { Clebsches } \quad S, S^{\prime}=1 / 2,3 / 2 \quad B=N, \Delta
$$

EM current operator expressed through generators:

$$
\begin{aligned}
J_{S}^{\mu}(q) & =G_{E}^{S}\left(q^{2}\right) \frac{1}{2} g^{\mu 0}-i \frac{1}{2} \frac{G_{M}^{S}\left(q^{2}\right)}{\Lambda} \epsilon^{0 \mu i j} q^{i} \hat{S}^{j} \\
J_{V}^{\mu a}(q) & =G_{E}^{V}\left(q^{2}\right) \hat{I}^{a} g^{\mu 0}-i \frac{6}{5} \frac{G_{M}^{V}\left(q^{2}\right)}{\Lambda} \epsilon^{0 \mu i j} q^{i} \hat{G}^{j a} \\
J_{E M}^{\mu}(q) & =J_{S}^{\mu}(q)+J_{V}^{\mu 3}(q),
\end{aligned}
$$

$q^{0}=\mathcal{O}\left(N_{c}^{-1}\right), q^{i}=\mathcal{O}\left(N_{c}^{0}\right)$
momentum transfer
$G_{E, M}^{V, S}\left(q^{2}\right)$ form factors

Expresses parametric expansion in $1 / N_{c}$
Charges/form factors fixed from $N \rightarrow N$ matrix elements
Predicts $N \rightarrow \Delta$ and $\Delta \rightarrow \Delta$ matrix elements

1/Nc expansion: Kinematic regimes

Kinematic variables in inclusive electron scattering

$$
\begin{array}{lll}
& s=(k+p)^{2} & \text { CM energy } \\
e(k)+N(p) \rightarrow e\left(k^{\prime}\right)+X\left(p^{\prime}\right) & q^{2}=\left(k-k^{\prime}\right)^{2} & \text { momentum trans } \\
& M_{X}^{2}=p^{\prime 2}=(p+q)^{2} & \text { final-state mass }
\end{array}
$$

Kinematic regimes in $1 / \mathrm{Nc}$ expansion

	Energy regime	$1 / N_{c}$ expansion regime	Channels open	Final states possible
I	$m_{N}<\sqrt{s}<m_{\Delta}$	$\sqrt{s}-m_{N} \sim N_{c}^{-1}, k \sim N_{c}^{-1}$	N	elastic
II	$m_{\Delta}<\sqrt{s} \ll m_{N *}$	$\sqrt{s}-m_{N} \sim N_{c}^{-1}, k \sim N_{c}^{-1}$	N, Δ	elastic or inelastic
III	$m_{\Delta}<\sqrt{s} \lesssim m_{N *}$	$\sqrt{s}-m_{N} \sim N_{c}^{0}, \quad k \sim N_{c}^{0}$	$N, \Delta, N^{*}($ suppr $)$	elastic or inelastic
$k=\left(s-m^{2}\right) / 2 \sqrt{s} \mathrm{CM}$ momentum				

"low energies"
"intermediate energies"

Expansion can be applied in different kinematic regimes: Different "focus", reach, accuracy
Systematic calculation, defined accuracy, could be improved by higher-order corrections
Non-resonant πN states suppressed in $1 / N_{c}$ relative to Δ

1/Nc expansion: Calculation

Calculate $e B \rightarrow e^{\prime} B^{\prime}$ amplitudes for $B, B^{\prime}=N, \Delta$ with $1 / N_{c}$-expanded currents
Integrate over phase space of intermediate state in TPE
Sum over intermediate and final states
Project out normal-spin dependent part of cross section

Results: A_{N} at intermediate energies

A_{N} at intermediate energies (regime III)
LO 1/Nc expansion result

$$
\begin{aligned}
\text { Valid for } & 1.23 \mathrm{GeV}<\sqrt{s} \lesssim 1.5 \mathrm{GeV} \\
\text { or } & 0.3 \mathrm{GeV}<k \lesssim 0.6 \mathrm{GeV}, \\
\text { and } & \theta \sim \pi / 2 \text { "large angle" }
\end{aligned}
$$

$A_{N} \sim 10^{-2}$ predicted in intermediate-energy regime
Large contribution of Δ final states at angles $\theta \sim \pi / 2$, could be tested experimentally!

LO 1/Nc expansion result: All transition currents magnetic isovector $G^{\text {ia }}$, simple structure. Electric currents come in at higher orders
A_{N} is overall isovector: $A_{N}($ proton $)=-A_{N}($ neutron $)$

Results: A_{N} at low energies

A_{N} rises steeply as function of energy above Δ threshold (here: CM momentum k)
Large contribution of Δ final states

Results: Real photon emission

A_{N} in inclusive $e N$ scattering also receives contribution from real photon emission channel

Interference of Virtual Compton Scattering and Bethe-Heitler amplitudes

Im (VCS) $\neq 0$ above Δ threshold
$1 / N_{c}$ expansion: Real photon emission process suppressed by $1 / N_{c}$ relative to TPE
$1 / N_{c}$ expansion guides analysis and interpretation of TPE processes

Summary

Computed/analyzed A_{N} from TPE in $e N$ scattering in resonance region in systematic approach based on $1 / N_{c}$ expansion
A_{N} predicted to be $\sim 10^{-2}$, should be measurable

Interesting features that could be studied experimentally
Separate contributions of N and Δ final states in spin-dependent cross section (= numerator)
Energy and angular dependence of spin-dependent cross section and A_{N}
Isospin dependence proton-neutron of spin-dependent cross section and A_{N}
Transition from resonance to DIS region - qualitative changes?

Possible theoretical improvements

Higher-order $1 / N_{c}$ corrections in intermediate-energy regime $\rightarrow N^{*}$ states, real γ emission
Combined chiral and $1 / N_{c}$ expansion in low-energy regime $\rightarrow \pi N$ states

Applications and extensions

$1 / N_{c}$ expansion enables systematic approach to $e N$ scattering in resonance region:
Organizes kinematics, channels $\Delta \leftrightarrow \pi N$, currents, calculation

Applications to TPE and positron physics

Beam normal spin asymmetry: Pure TPE effect, $\propto m_{\text {lepton }}$, enhanced by collinear logarithm
Charge asymmetry of $e^{ \pm} N$ cross section: Involves also $\operatorname{Re}(T P E)$, obtained dispersion integral
Electroweak processes, γZ exchange

Applications to hadronic physics
Transition between resonance and DIS regions, quark-hadron duality
Spin effects in intermediate-energy $e N$ scattering

