Spin effects in two-photon exchange processes in the resonance and DIS regions

C. Weiss (JLab), Positron Working Group Workshop, GWU, 18-20 March 2024

X inclusive

X = N elastic

 $X = \Delta, N^*$ inelastic

J.L. Goity, C. Weiss, C.T. Willemyns, Phys. Lett. B 835, 137580 (2022) [INSPIRE], Phys. Rev. D 107, 094026 (2023) [INSPIRE]

A. Afanasev, M. Strikman, C. Weiss, Phys. Rev. D 77, 014028 (2008) [INSPIRE]

Target normal single-spin asymmetry

Pure two-photon exchange effect

Inclusive or elastic/inelastic scattering

Theoretical analysis

Resonance region Δ , N^* : $1/N_c$ expansion

DIS region: Quark-based mechanisms

Transition: Duality, anomalous magnetic moment

Experimental opportunities

Proposed measurements

Connection with positron program

Two-photon exchange and target normal SSA

TPE has become field or research in its own right

Elastic ep cross section: TPE as radiative correction, involves Re(TPE) and Im(TPE) Much theoretical work, situation still inconclusive

Direct measurements: $e^{\pm}N$ charge asymmetry, $eN(\uparrow)$ target normal spin asymmetries

Target normal single-spin asymmetry

X inclusive X = N elastic, $X = \Delta, N^*$ inelastic

Zero at $O(\alpha^2)$, pure $O(\alpha^3)$ effect

Interference on one- and two-photon exchange Also contribution from Bethe-Heitler - Virtual Compton interference

Involves only Im(TPE): Finite integral, on-shell amps

Inclusive or elastic/inelastic scattering

Can be measured in wide kinematic range: Low-energy — resonance region — DIS

Resonance region

 N, Δ, N^* + nonresonant πN as final states and intermediate states in TPE

Need to combine contributions of channels at amplitude level - cancellations?

Need transition currents $\langle \Delta | J | N \rangle$, $\langle \Delta | J | \Delta \rangle$ etc.

Develop systematic approach based on 1/Nc expansion

J.L. Goity, C. Weiss, C.T. Willemyns 2022/2023

Elastic channel: Calculation using empirical amplitudes Ahmed, Blunden, Melnitchouk 2023

Resonance region: 1/Nc expansion

Large- N_c limit of QCD

Semiclassical limit of QCD 'tHooft 1974, Witten 1979

Hadron masses, couplings, matrix elements scale in N_{c} "Organization" of non-perturbative dynamics

Emerging dynamical spin-flavor symmetry $SU(2N_f)$ Baryons in multiplets with masses $O(N_c)$, splittings $O(1/N_c)$ Gervais, Sakita 1984; Dashen, Manohar, Jenkins 1993

 $N \to N$ and $N \to \Delta$ transitions related by symmetry: $\langle \Delta | \mathcal{O} | N \rangle = [$ symmetry factor $] \times \langle N | \mathcal{O} | N \rangle$

$1/N_c$ expansion of hadronic matrix elements

Parametric expansion: Systematic, predictive, controlled accuracy

Applied to current matrix elements, hadronic amplitudes Vector and axial currents: Fernando, Goity 2020

Resonance region: Transition currents

Generators of spin-flavor group algebra: $\hat{S}^i, \hat{I}^a, \hat{G}^{ia}$

Matrix elements between ground-state baryons from symmetry:

 $\langle B(S', S'_3, I'_3) | \dots | B(S, S_3, I_3) \rangle = \operatorname{fun}(N_c) \times \operatorname{Clebsches} S, S' = 1/2, 3/2 \quad B = N, \Delta$

EM current operators expanded in generators:

$$J^{0}, J^{i} = \sum G(q^{2}) \times \{\hat{S}^{i}, \hat{I}^{a}, \hat{G}^{ia}\} \qquad q^{0} = \mathcal{O}(N_{c}^{-1}), \ q^{i} = \mathcal{O}(N_{c}^{0}) \text{ momentum transfer}$$
$$G_{E,M}^{V,S}(q^{2}) \text{ form factors}$$
isovector/isoscalar

Expresses parametric expansion in $1/N_c$

Form factors fixed from $N \rightarrow N$ matrix elements

Predicts $N \rightarrow \Delta$ and $\Delta \rightarrow \Delta$ matrix elements

Resonance region: Kinematic regimes

$$e(k) + N(p) \rightarrow e(k') + X(p')$$

$$s = (k + p)^2$$

 $q^2 = (k - k')^2$
 $M_X^2 = {p'}^2 = (p + q)^2$

CM energy momentum transfer final-state mass

Energy regime1/Nc expansion regimeChannels open"low energy"
$$m_{\Delta} < \sqrt{s} \ll m_{N^*}$$
 $\sqrt{s} - m_N \sim N_c^{-1}$, $k_{cm} \sim N_c^{-1}$ N, Δ "intermediate" $m_{\Delta} < \sqrt{s} \le m_{N^*}$ $\sqrt{s} - m_N \sim N_c^0$, $k_{cm} \sim N_c^0$ N, Δ, N^*

1/Nc expansion can be applied in different kinematic regimes: Different "focus", reach, accuracy Systematic calculation, defined accuracy, could be improved by higher-order corrections Non-resonant πN states suppressed in $1/N_c$ relative to Δ

Resonance region: Calculation

Calculate $eB \rightarrow e'B'$ amplitudes for $B, B' = N, \Delta$ with $1/N_c$ -expanded currents

Integrate over phase space of intermediate state in TPE

Sum over intermediate and final states

Project out normal-spin dependent part of cross section

Resonance region: Results

 A_N at intermediate energies LO 1/Nc expansion result Valid for 1.23 GeV $<\sqrt{s} \lesssim$ 1.5 GeV (+ higher) and $\theta \sim \pi/2$ "large angle"

[Low energies \rightarrow see supplement]

 $A_N \sim 10^{-2}$ predicted in intermediate-energy regime

Large contribution of Δ final states at angles $\theta \sim \pi/2$, could be tested experimentally!

LO 1/Nc expansion result: All transition currents magnetic isovector G^{ia} , simple structure. Electric currents come in at higher orders

 A_N is overall isovector: A_N (proton) = $-A_N$ (neutron)

Resonance region: Real photon emission

 A_N in inclusive eN scattering also receives contribution from real photon emission channel

Interference of Virtual Compton Scattering and Bethe-Heitler amplitudes

Im (VCS) $\neq 0$ above Δ threshold

 $1/N_c$ expansion: Real photon emission process suppressed by $1/N_c$ relative to TPE

 $1/N_c$ expansion guides analysis and interpretation of TPE processes

DIS region: Mechanisms for SSA

Unpolarized DIS cross section from high-momentum scattering on single quark: Factorization, PDF

TPE amplitude needs to "interfere" - same final state

Possible mechanisms for SSA

TPE with interaction of quark with target fields: $g_T(x)$ twist-3 Metz, Schlegel, Goeke 2006

TPE with chirality flip of quark through interaction with vacuum fields: h(x) transversity + quark mass Afanasev, Strikman, Weiss 2007

TPE involving multiple quarks: Multiquark distributions Schlegel 2013

DIS region: Predictions and measurements

Predictions for SSA

Quark chirality-flip mechanism $A_N \lesssim 10^{-3}$

Multiquark mechanism $A_N \sim 10^{-2}$

Wide range of numerical predictions

Measurements

HERMES 2014: p target, W> 2 GeV, $A_N\sim 10^{-2},$ consistent with zero

JLab Hall A Katich et al. 2014: 3He target, W = 1.7-2.9 GeV, $A_N \sim 10^{-2}$, nuclear effects?

Proposal JLab Hall A Grauvogel, Kutz, Schmidt 2021: p target, E_e = 2.2, 4.4, 6.6 GeV

Proposal JLab CLAS12: Schmidt et al 2023

DIS region: Predictions and measurements

Resonance region: $A_N \sim 10^{-2}$, solid predictions DIS region: $A_N \sim 10^{-2} - 10^{-4}$, large uncertainties Follow transition!

Experiments should measure

Contributions of Δ , N^* final states to A_N ; M_X evolution at fixed s, Q^2 : Elastic \rightarrow inelastic s and Q^2 dependence of A_N : Low \rightarrow high energies/momenta

Isospin dependence?

New area of quark-hadron duality

- Quark single-particle scattering resonance excitation
- Emergence of anomalous magnetic moment: Quark << Nucleon

Summary

 A_N as pure TPE observable, in inclusive or elastic/inelastic scattering

Resonance region analyzed in 1/Nc expansion: Systematic, controlled accuracy. $A_N \sim 10^{-2}$, large contribution from Δ final state

DIS region: Various quark-based mechanisms, wide range of predictions $A_N \sim 10^{-3} - 10^{-2}$

Experiment should measure M_X and s, Q^2 evolution! Test proposed mechanisms in DIS region; new area of quark-hadron duality

Complementary to positron measurements

Theoretical improvements in 1/Nc analysis of resonance region

Higher-order $1/N_c$ corrections in intermediate-energy regime $\rightarrow N^*$ states, real γ emission

Combined chiral and $1/N_c$ expansion in low-energy regime $\rightarrow \pi N$ states

1/Nc expansion: Further applications

 $1/N_c$ expansion enables systematic approach to eN scattering in resonance region: Organizes kinematics, channels $\Delta \leftrightarrow \pi N$, currents, calculation

Applications to TPE and positron physics

Beam normal spin asymmetry: Pure TPE effect, $\propto m_{\text{lepton}}$, enhanced by collinear logarithm

Charge asymmetry of $e^{\pm}N$ cross section: Involves also Re(TPE), obtained dispersion integral

Electroweak processes, γZ exchange

Applications to hadronic physics

Transition between resonance and DIS regions, quark-hadron duality

Spin effects in intermediate-energy *eN* scattering

Results: A_N at low energies

 A_N rises steeply as function of energy above Δ threshold (here: CM momentum k) Large contribution of Δ final states