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Motivation
• Statistical inference appears ubiquitously throughout science: 

Which model best describes the data?


• Physics often provides well-motivated theoretical models for 
data (this is very special in practical applications of statistics).


• Reliable parameter extraction is often more important than 
model comparison by itself.


• Frequently the exact microscopic model is known exactly 
but too cumbersome to use in practice


• Sometimes an exact model is absent, but phenomenological 
considerations suggest a class of models
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Motivation
• Most of my examples will be from numerical lattice QCD, 

but the statistical ideas are completely general.


• Examples of model selection in lattice QCD:


• Is SU(2) or SU(3) 𝝌PT more applicable?


• Does NLO vs NNLO work better?


• How to handle exact models with infinitely many terms?


• What is the systematic effect of the choice or truncation?


• Is some choice optimal?
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Model averaging in the literature
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HPQCD: 0807.1687
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Figure 12: Systematic error distributions for the LO LECs. These are obtained by varying

the analysis procedure, as described in the text. The total distribution is delineated by the

solid black line. It is the sum of the distributions corresponding to the analyses performed

in the x and ⇠-expansion. These are shown as a red dotted line and a blue dashed line,

respectively. Where only the x or ⇠-expansion distributions contribute, they partially hide

the line corresponding to the total distribution. In the plots, the central, vertical, dotted line

is the mean of the total distribution, i.e. our final central value. The central, vertical green

band denotes the systematic error, the larger pink one, the statistical error and the largest

gray one, the sum in quadrature of these two errors.

choice of pion mass range, one for M
max
⇡ = 250MeV and another for 300 MeV. We then

compute the mean of each of these distributions. The error associated with this source of
systematic uncertainty is obtained from the variance of these means.

As Table 3 shows, the uncertainties on our results are dominated by statistical errors. This
means that the numerical values of the contributions of each source of systematic uncertainty
are not particularly relevant here. Nevertheless, for completeness, we provide a rough hierar-
chy of these contributions here. The dominant source for F , ⌃ and F⇡ is the pion-mass cut,
followed by ZS . The pion-mass cut also dominates the systematic error in ¯̀

3, but is followed
by the one associated with the choice of expansion (x versus ⇠). The latter dominates in ¯̀

4.
Let us now turn to a discussion of the results themselves. In both expansions, we determine

the LO LECs with total uncertainties in the range of 1.5 to 2.9%. The pion decay constant
is obtained even more precisely, with a total uncertainty of less than 1% and the uncertainty
on F⇡/F is as small as 0.7%. Of course the NLO LECs are obtained with significantly less
precision: ¯̀

4 has a total uncertainty of approximately 10% while for ¯̀
3 it is around 25%.

The agreement of the results obtained from the x and ⇠-expansions is striking. This
is an additional confirmation that NLO SU(2) �PT correctly describes M

2
⇡ and F⇡ up to

M⇡ ' 300MeV. Indeed, the two expansions di↵er by higher order terms. This di↵erence
also explains why the agreement is better for LO LECs and F⇡ than it is for NLO LECs:
the smaller, less constrained NLO contributions are more a↵ected by changes made at higher
orders.

Because of the consistency of the results in the two expansions, we combine them in
the first column of Table 4 to obtain our final results. This combination is performed in
a way which is entirely consistent with our determination of systematic errors. The two
expansions (x / ⇠) are treated as an additional alternative in our determination of LECs and
other quantities. Thus, our final results are obtained from a total of 144⇥ 2 = 288 di↵erent

32
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Just a few examples— 
not an exhaustive list !



Model averaging in the literature
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HPQCD,  arXiv:0807.1687


“We average our 22 different results 
weighted by their inverse variances, 
giving more weight to results with 
smaller variances. The variance for 
our composite result is the inverse of 
the average of the inverse variances 
from the separate determinations.” 

Weighted averages: 
Use the variance as weight


https://arxiv.org/abs/0807.1687


Model averaging in the literature
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Figure 12: Systematic error distributions for the LO LECs. These are obtained by varying

the analysis procedure, as described in the text. The total distribution is delineated by the

solid black line. It is the sum of the distributions corresponding to the analyses performed

in the x and ⇠-expansion. These are shown as a red dotted line and a blue dashed line,

respectively. Where only the x or ⇠-expansion distributions contribute, they partially hide

the line corresponding to the total distribution. In the plots, the central, vertical, dotted line

is the mean of the total distribution, i.e. our final central value. The central, vertical green

band denotes the systematic error, the larger pink one, the statistical error and the largest

gray one, the sum in quadrature of these two errors.

choice of pion mass range, one for M
max
⇡ = 250MeV and another for 300 MeV. We then

compute the mean of each of these distributions. The error associated with this source of
systematic uncertainty is obtained from the variance of these means.

As Table 3 shows, the uncertainties on our results are dominated by statistical errors. This
means that the numerical values of the contributions of each source of systematic uncertainty
are not particularly relevant here. Nevertheless, for completeness, we provide a rough hierar-
chy of these contributions here. The dominant source for F , ⌃ and F⇡ is the pion-mass cut,
followed by ZS . The pion-mass cut also dominates the systematic error in ¯̀

3, but is followed
by the one associated with the choice of expansion (x versus ⇠). The latter dominates in ¯̀

4.
Let us now turn to a discussion of the results themselves. In both expansions, we determine

the LO LECs with total uncertainties in the range of 1.5 to 2.9%. The pion decay constant
is obtained even more precisely, with a total uncertainty of less than 1% and the uncertainty
on F⇡/F is as small as 0.7%. Of course the NLO LECs are obtained with significantly less
precision: ¯̀

4 has a total uncertainty of approximately 10% while for ¯̀
3 it is around 25%.

The agreement of the results obtained from the x and ⇠-expansions is striking. This
is an additional confirmation that NLO SU(2) �PT correctly describes M

2
⇡ and F⇡ up to

M⇡ ' 300MeV. Indeed, the two expansions di↵er by higher order terms. This di↵erence
also explains why the agreement is better for LO LECs and F⇡ than it is for NLO LECs:
the smaller, less constrained NLO contributions are more a↵ected by changes made at higher
orders.

Because of the consistency of the results in the two expansions, we combine them in
the first column of Table 4 to obtain our final results. This combination is performed in
a way which is entirely consistent with our determination of systematic errors. The two
expansions (x / ⇠) are treated as an additional alternative in our determination of LECs and
other quantities. Thus, our final results are obtained from a total of 144⇥ 2 = 288 di↵erent
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Figure 12: “Systematic error distributions for the LO LEC… In the plots, 
the central, vertical, dotted line is the mean of the total distribution, i.e. 
our final central value. The central, vertical green band denotes the 
systematic error, the larger pink one, the statistical error and the largest 
gray one, the sum in quadrature of these two errors.”

[Emphasis added]

Combining distributions: 
Total distribution gives 

mean and error


https://arxiv.org/abs/1310.3626


Model averaging in the literature
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CalLat: 1805.12130


p 20. “The weighted average is performed with lsqfit.”


(Fantastic fitting code, but default weights 
 are not quite right for model averaging)

A Bayesian framework: 
Combine results using

Bayesian model weights


(Close to what we advocate)

https://arxiv.org/abs/1805.12130


Model averaging in the literature
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FIG. 19: “Histograms of … values obtained from various versions of the 
continuum/chiral extrapolation and various inputs of quark masses and 
scale values from the physical- mass analysis. Our central fit gives 9191 
MeV3/2…those values are marked with vertical black lines. At the top of 
each histogram, we show the range taken as the systematic error of the 
self-contained chiral analysis of the current section.


A conservative estimate: 
Systematic error from full width

of model variations.


https://arxiv.org/abs/1407.3772


Model averaging in the literature
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NPLQCD & QCDSF:2003.12130


“This work employs the Akaike 
Information Criterion (AIC) with a cutoff 
chosen to penalize overfitting in which 
a fit with e excited states is only 
preferred over a fit with e − 1 excited 
states if

AIC(e) − AIC(e − 1) < −A × NDOF(e) 


Model selection
Picking fits 
Use the AIC to choose a best fit.

Closely related to what we describe


https://arxiv.org/pdf/2003.12130.pdf


!11

• Existing approaches to model averaging are often ad hoc.  

• Bayesian statistics provides a rigorous perspective to this question


• Bayesian model averaging weights models according to their 
statistical probability. Benefits: 


• Offers better precision than, e.g., just taking the full range of 
variations


• Removes dependence on arbitrary decisions by the analyst


• Helps clarify statistical assumptions related to existing methods

Bayesian model averaging



Example: 
Lattice QCD hadron 
spectroscopy 



Ex: Lattice QCD hadron spectroscopy 

• Hadronic spectrum ⟷ QCD 2pt correlation functions

!13

“The operators couple to  
an infinite tower of states.”

“The ground-state mass 
asymptotically dominates 
the Euclidean 2pt function.”
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t=0

Ex: Lattice QCD hadron spectroscopy 
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t=5

Ex: Lattice QCD hadron spectroscopy 
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t=10

Ex: Lattice QCD hadron spectroscopy 
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t=15

Ex: Lattice QCD hadron spectroscopy 



 18

t=20

Ex: Lattice QCD hadron spectroscopy 
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Ex: Lattice QCD hadron spectroscopy 

Analysis choices:


1. Fit window (tmin, tmax)?


‣ tmin too high: throwing 
away valuable data 
(signal decays 
exponentially in time!)


‣ tmin too low: 
contamination from 
excited states

tmin tmax

2. How many states to 
include in the truncated 
model for C(t)? 
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Varying tmin with fixed tmax

• Intuition: “Occam’s razor”


• “Good” models should describe 
the most data with the fewest 
parameters


• Further, it should be possible to 
“marginalize” or “average” over 
different results to obtain a 
rigorous bound on the 
systematic error from “model 
choice.”


• Might expect:

tmaxtmin

pr(M|D)

Ex: Lattice QCD hadron spectroscopy 

?



Formalizing these ideas 
with Bayesian statistics



Bayesian model averaging
• Consider data D, models {M}, model parameters a 

• Group parameters as a = ac ⋃ am with ac as “common 
parameters” and am as “marginalized parameters”


• We want to average over the space of models

!22

• Key: pr(M|D) is the model weight or “Bayes factor”:



Model average for single parameter a0
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Bayesian model averaging

Central value

Combined statistical+systematic error



Model average for single parameter a0
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Bayesian model averaging

Central value

Combined statistical+systematic error

Statistical error: 
Weighted average of

statistical variance

Systematic error: 
(a) Special case of uniform weights 

➞ “variance over space of models”

(b) General case: not variance from

weighted estimates
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Bayesian model averaging
• Consider an analysis with just two models, M1 and M2


• Suppose M1 is strongly favored by the data (p≪1):


• pr(M1|D) = 1 - p


• pr(M2|D) = p


• Recover results of M1 as p ➞ 0


• For p ≠ 0, corrections likely to be small (but depends on sizes!)



Bayesian model averaging
Likelihood function 

~Exp[-𝝌2]
Prior for parameters 

in model Prior for model

• In principle, the model weight is completely calculable (e.g, using 
Monte Carlo)


• For large data sets, the integrand becomes tightly localized 
around the best-fit 𝝌2 and increasingly Gaussian

!26



Bayesian model averaging
Evaluate integral


➞ Gaussian Approximate Posterior (GAP)

!27

Likelihood function tightly 
peaked around best-fit 𝝌2

Gaussian fluctuations 
about the best-fit 𝝌2

Prior covariance 
matrix

Model prior

Cancels in average 
when pr(M) uniform 

Last two terms: 
“Information gain” 
in fit over the prior



Bayesian model averaging
Before using this result to compute pr(M|D), we must 
first think carefully:


1. Empirical priors and the Jeffreys-Lindley paradox  

(Not specific to our analysis, must confront in any 
real-world application of Bayesian model 
weights)


2. Bias correction

!28



#1: Empirical priors
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• We often use empirical priors and imagine that we can remove 
them (prior width ➞ ∞) without influencing the best fit too much.


• However, taking prior width to ∞ gives a divergence in the model 
weight!


• Jeffreys-Lindley paradox: For models with different numbers of 
parameters, the simpler model is pathologically preferred, 
regardless of the data.


• Note: divergence cancels when comparing models with 
common priors. 

log det ⌃̃� log det⌃? = 2
X

i

log

✓
�̃i

�?
i

◆

<latexit sha1_base64="So7ry1Jb2sP5jfjTHrfW8NN2msQ="></latexit>



#1: Empirical priors
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• Formal Solution: use cross-validation to set empirical 
priors with a partial fit to “training” data. Asymptotically, 
both covariance matrices then approach the true model. 
The difference will vanish as 1/N.


• Intuition: If data set is “infinite,” then dividing the data 
into training and testing samples yields two samples that 
match the population distribution. 


• In practice, we can simply ignore these terms as sub-
leading 1/N effects. (Or get serious about using real, 
fixed priors)



#2: Bias correction
• The sample log likelihood is a biased estimator of the true log 

likelihood. (Recall: ❬biased estimator❭ ≠ asymptotic truth)


• Why? Roughly, the sample log-likelihood systematically overshoots 
the true value due to finite-sample-size fluctuations in the data


• The bias correction has been computed in the statistics literature:


• The matrix product asymptotically approaches the identity, so the 
trace counts the number of parameters k:


• This is the well-known Akaike information criterion, or AIC.
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�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k

<latexit sha1_base64="Ii8uwO7uGNJntGANCtRHkiG6WIs="></latexit>

J = (negative) Hessian matrix


I = Fisher matrix



Tallying progress
• We want to compute model averages. We need 

pr(M|D):


• So far we’ve found:


• This result applies to different models for fixed data.


• We can extend it to account for cuts on data.

�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k

<latexit sha1_base64="Ii8uwO7uGNJntGANCtRHkiG6WIs="></latexit>
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Data subset selection 
• Data subset selection can be reinterpreted as a model selection problem with a 

formal auxiliary model. (Note: we still just fit as usual!)


• Ex: choosing tmin for a 2pt correlator fit


‣ For t > tmin: fit to N-state exponential model.


‣ For t ≤ tmin: imagine fit to a “perfect model” that interpolates the data. 


• For Ncut data points, the “perfect model” can be an order-Ncut polynomial.


• The full model has k + Ncut total parameters


• By construction, the perfect model adds nothing to 𝝌2 


• The new parameters do contribute to the model weight via the bias-correction 
term:
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�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw=">AAACT3icbVFNTxsxFPQGKBBoSdsjF6sRUiLUaDeKRHtDbQ+9gEBqACkboreON7Firy37bUW07D/spb31b/TSQyuEE/bA10i2RjPzZHucGCkchuHvoLayuvZifWOzvrX98tVO4/WbM6dzy3ifaantRQKOS5HxPgqU/MJYDiqR/DyZfV7459+5dUJn33Bu+FDBJBOpYIBeGjXS910aSz2hMfIrtKowtmwdXX9p0xiMsfqKPhto033aitlUjIrYKgr5pLyMHYJtX3a91Z0ttuM7k+VYjhrNsBMuQZ+SqCJNUuFk1PgVjzXLFc+QSXBuEIUGhwVYFEzysh7njhtgM5jwgacZKO6GxbKPku55ZUxTbf3KkC7V+xMFKOfmKvFJBTh1j72F+Jw3yDH9MCxEZnLkGbs7KM0lRU0X5dKxsJyhnHsCzAp/V8qmYIGh/4K6LyF6/OSn5KzbiXqdj6e95uGnqo4NskvekRaJyAE5JF/JCekTRn6QP+Qf+R/8DP4GN7UqWgsq8pY8QG3zFpmZsUU=</latexit>

Extra piece



Data subset selection 
• Data subset selection can be reinterpreted as a model selection problem with a 

formal auxiliary model. (Note: we still just fit as usual!)


• Ex: choosing tmin for a 2pt correlator fit


‣ For t > tmin: fit to N-state exponential model.


‣ For t ≤ tmin: imagine fit to a “perfect model” that interpolates the data. 


• To cut Ncut data points, the “perfect model” can be an order-Ncut polynomial.


• The full model has k + Ncut total parameters


• By construction, the perfect model adds nothing to 𝝌2 


• The new parameters do contribute to the model weight via the bias-correction 
term:
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�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw="></latexit>

Extra piece

Key point: 
This is a formal argument. 
In practice, fit to the usual model. 
Interpret the result with the modified weight.



Ex. 1: tmin averaging (toy data)
Two-exponential “mock correlator”model truth, fit to single exponential

!35
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Correlator fit results  
for E0, varying tmin

Two-exponential “mock correlator”model truth, fit to single exponential

Ex. 1: tmin averaging (toy data)
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Correlator fit results  
for E0, varying tmin

Cut time tmin • More aggressive 
• Less total data

• Less aggressive 
• More total data 
• More excited-state 

contamination

Two-exponential “mock correlator”model truth, fit to single exponential

Ex. 1: tmin averaging (toy data)
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Correlator fit results  
for E0, varying tmin

Cut time tmin • More aggressive 
• Less total data

• Less aggressive 
• Less total data 
• More excited-state 

contamination

pr(M|D)

Two-exponential “mock correlator”model truth, fit to single exponential

Ex. 1: tmin averaging (toy data)
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Two-exponential “mock correlator”model truth, fit to single exponential

Panels: 4 x different draws of mock data

Model average 
agrees well with 
true ground-state

Ex. 1: tmin averaging (toy data)

!39



Ex. 2: tmin averaging (lattice data)
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Real lattice data, staggered fermions, fit to (1+1) states

• Model average agrees closely (<1𝜎) 
with published best-fit result from 
arXiv:1809.02827

Real lattice data, staggered fermions, fit to (1+1) states

https://arxiv.org/abs/1809.02827
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Real lattice data, staggered fermions, fit to (1+1) states

• Repeat: (2+2), (3+3), and (4+4) states. 
• Better fits for smaller tmin
• Model average is quantitatively 

unchanged
• Model average agrees closely (<1𝜎) 

with published best-fit result from 
arXiv:1809.02827

[Repeated from previous slide]

(1+1) states

(2+2) states (3+3) states (4+4) states

Ex. 2: tmin averaging (lattice data)

https://arxiv.org/abs/1809.02827


Ex. 3: Matrix elements (lattice data)
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• Model weights are tightly peaked 
around a single fit

• Occam’s razor: fits using fewer 
parameters to describe more data 
are preferred.

• Model averaging ➞ Model selection
• The result agrees closely (<1𝜎) with 

published best-fit result from arXiv:
1809.02827

Real lattice data, staggered fermions

https://arxiv.org/abs/1809.02827
https://arxiv.org/abs/1809.02827


Possible applications at JLab?
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“[The pion valence quark distribution] is 
achieved by numerically evaluating the 
convolution of the NLO kernel Eq. (8) and 
…phenomeno log ica l l y mot i va ted 
functional forms of the PDF.”


R.S. Sufian et al.

PRD 102 (2020) 5, 054508 

arXiv:2001.04960

“To avoid bias, we consider a wide 
selection of scatter ing amplitude 
parameterizations that fall into four 
familiar categories…

D.J. Wilson et al. [hadspec]

PRL 123 (2019) 4, 042002

arXiv:1904.03188

https://arxiv.org/abs/2001.04960
https://arxiv.org/pdf/1904.03188.pdf


Conclusions
• Bayesian model averaging is a statistically rigorous way to handle 

uncertainty in model specification without being overly conservative


• Examples are well-matched to standard analysis problems in 
practical lattice problems:


❖ What are acceptable tmin / tmax values in a correlator fit?


❖ How many excited states to keep?


❖ What mass range to use in a 𝜒PT fit?


❖ How many terms should appear in an EFT fit?


• Implementation is easy: just need 𝜒2 and the number of parameters 
in the model


• We’ve seen good performance in tests with both mock and real data
!44



Backup slides
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Ex. 1: tmin averaging
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Two-exponential “mock correlator”model truth, fit to single exponential

Scaling results�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw="></latexit>

�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw="></latexit>

�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw="></latexit>

�2 log pr(M |D) ⇡ �2 log pr(M) + (�?
aug)

2 + 2k + 2Ncut

<latexit sha1_base64="4tKklfl2MzBkm5bfEnxi7r5PHIw=">AAACT3icbVFNTxsxFPQGKBBoSdsjF6sRUiLUaDeKRHtDbQ+9gEBqACkboreON7Firy37bUW07D/spb31b/TSQyuEE/bA10i2RjPzZHucGCkchuHvoLayuvZifWOzvrX98tVO4/WbM6dzy3ifaantRQKOS5HxPgqU/MJYDiqR/DyZfV7459+5dUJn33Bu+FDBJBOpYIBeGjXS910aSz2hMfIrtKowtmwdXX9p0xiMsfqKPhto033aitlUjIrYKgr5pLyMHYJtX3a91Z0ttuM7k+VYjhrNsBMuQZ+SqCJNUuFk1PgVjzXLFc+QSXBuEIUGhwVYFEzysh7njhtgM5jwgacZKO6GxbKPku55ZUxTbf3KkC7V+xMFKOfmKvFJBTh1j72F+Jw3yDH9MCxEZnLkGbs7KM0lRU0X5dKxsJyhnHsCzAp/V8qmYIGh/4K6LyF6/OSn5KzbiXqdj6e95uGnqo4NskvekRaJyAE5JF/JCekTRn6QP+Qf+R/8DP4GN7UqWgsq8pY8QG3zFpmZsUU=</latexit>

Larger data sets

“Choose best-fit tmin=14”

Conservative systematic 
(p-value > 0.1 only) 



Model Subset selection
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• Consider the data sample yi on the ith gauge 
configuration. yi is generally a vector: C(t), t∈[1,…Nt]


• Partition the data samples yi =(yicut, yikeep)


• Define a joint model:
Sample mean
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All other terms involving the cut data contain the 
difference [yc̅ut - gM(a, P)] at least once. Therefore, 
they vanish identically by construction.

Model Subset selection


