

Impacts on the pion PDFs using the Sullivan process in future facilities

Patrick Barry, Chueng-Ryong Ji, Wally Melnitchouk, and Nobuo Sato

Mesons

• Pion is the Goldstone boson associated with SU(2) chiral symmetry breaking

• Kaon – SU(3)

- Simultaneously a $q \overline{q}$ bound state
- Studying these structures provides another angle to probe QCD and effective confinement scales
- More available data is desperately needed

Pion PDFs from lattice + experimental data

 The inclusion of lattice QCD data along with experimental data can also help us to reveal pion structure

Pion vs proton TMDs

- Differences are purely non-perturbative TMDs • Important to compare different hadronic ullet
 - systems

TDIS program: Sullivan process and W_{π}^2

- Measure $F_2^{T(4)}(x,Q^2,x_L,t) = f_{\pi N}(x_L,t)F_2^{\pi}(x/\bar{x}_L,Q^2),$
- Impose kinematic cuts on experimental data
- What about the W_{π}^2 ?

Check the resonance regions

Mass $m = 139.57039 \pm 0.00018$ MeV (S = 1.8) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m

 $I(J^{PC}) = 0,1(1^{--})$

 $\begin{array}{ll} \text{Mass } m < 1 \times 10^{-18} \text{ eV} \\ \text{Charge } q < 1 \times 10^{-46} e & (\text{mixed charge}) \\ \text{Charge } q < 1 \times 10^{-35} e & (\text{single charge}) \\ \text{Mean life } \tau = \text{Stable} \end{array}$

ρ(770)	$I^{G}(J^{PC}) = 1^{+}(1^{})$
See the note in $\rho(770)$ Particle Listings. Mass $m = 775.26 \pm 0.25$ MeV Full width $\Gamma = 149.1 \pm 0.8$ MeV $\Gamma_{ee} = 7.04 \pm 0.06$ keV	
$b_1(1235)$ Mass $m = 122$ Full width $\Gamma =$	$I^{G}(J^{PC}) = 1^{+}(1^{+})$ $9.5 \pm 3.2 \text{ MeV} (S = 1.6)$ $142 \pm 9 \text{ MeV} (S = 1.2)$
a ₂ (1	1320) $I^{G}(J^{PC}) = 1^{-}(2^{++})$ Mass $m = 1316.9 \pm 0.9$ MeV (S = 1.9) Full width $\Gamma = 107 \pm 5$ MeV [J]

The quantum numbers of a charged π and photon result in specific outgoing mesons, here considered the ρ -meson

Contribution from ρ to F_2^{π}

- Comparing the Δ resonance in the nucleon to the ρ resonance in the pion
- Appreciable certainly at larger Q^2 challenging to describe with partonic degrees of freedom introduce a cut in W_{π}^2

Current 11 GeV TDIS kinematics

• Plotting available 11 GeV TDIS kinematics with a few representative W_{π}^2 curves

Upgrade to 22 GeV

- Much more available kinematic range in (x, Q^2)
- Recall the W_{π}^2 cut removed large x_{π} and small Q^2 data
- New blue points will survive the cut

Kinematics with 22 GeV

• MASSIVE increase in available data points

Total kinematics

- Important overlap of TDIS points in the DY region
- Tests of universality of the PDFs!

Impact on pion PDFs with 22 GeV

- Knowledge of pion PDFs increases dramatically with 22 GeV beam
- Assuming 1.2% systematic uncertainty

Pion SIDIS: access to TMDs

 $eN \rightarrow e'N'\pi X$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
 - Needed for tests of universality

Available kinematics for JLab

Can only use 22 GeV data for any TMD analysis

Kaons

- As a best estimate for tagged hyperon rates, we look to the splitting function ratios of the $f_{\pi N}$ to $f_{K\Lambda}$
- Estimate roughly an appropriate regulator through $pp \rightarrow \Lambda X$ data
- Preliminary fits indicate $f_{K\Lambda}/f_{\pi N} \approx 1\%$
- Rates in cross sections may be roughly the same!

Conclusion

- Impacts from the 11 GeV TDIS experiment on pion PDFs will be limited
- The 11 GeV TDIS can measure the low- W_{π} pion structure function
- More constraints will come from larger 22 GeV upgrade
- JLab 22 upgrade analysis constraining the valence quark allows complementary measurements at EIC with more solid footing
- Kaon PDF analysis may be more realistic with energy upgrade and high luminosity

Backup Slides

What to choose for W_{π}^2

- HERA did not measure the low- W_{π}^2 region
- Potentially largest resonance comes from the ρ-meson
- Must be well above the peak of the resonance
- Estimating the safe region to be an energy above 95% of the area under the curve

Brief words on kaon TDIS

- Sullivan process applies, but a hyperon must be tagged
- Consider again, not only inclusive W^2 but W_K^2

Kinematics for 11 GeV Kaon TDIS

• Beware of such large |t| further away from kaon pole

Kinematics for 22 GeV Kaon TDIS

Accepting of more points at smaller |k|

Resonance from K^*

• The K^* resonance is much more narrow than for ρ meson

•
$$W_{K,\max}^2 = 1 \text{ GeV}^2$$

EIC vs JLab 22 GeV

 JLab measurements will be much more precise with a 200 day beam run – luminosity plays a big role

Use of
$$W^2$$
 for SIDIS

The unobserved invariant mass-squared in inclusive DIS is

$$W_{\rm tot}^2 = M^2 + \frac{Q^2(1 - x_{\rm Bj})}{x_{\rm Bj}}.$$
 (6.26)

In SIDIS it is

$$W_{\text{SIDIS}}^{2} = M^{2} + M_{\text{B}}^{2} + \frac{Q^{2}(1 - x_{\text{Bj}} - z_{\text{h}})}{x_{\text{Bj}}} + \frac{Q^{4}z_{\text{h}}\left(\sqrt{1 + \frac{4M^{2}x_{\text{Bj}}^{2}}{Q^{2}}}\sqrt{1 - \frac{4M^{2}x_{\text{Bj}}^{2}M_{\text{B},\text{T}}}{z_{\text{h}}^{2}Q^{4}}} - 1\right)}{2M^{2}x_{\text{Bj}}^{2}}$$
$$\stackrel{M,M_{\text{B}} \to 0}{=} \frac{Q^{2}(1 - x_{\text{Bj}})(1 - z_{\text{h}})}{x_{\text{Bj}}} - \frac{\mathbf{P}_{\text{B},\text{T}}^{2}}{z_{\text{h}}}.$$
(6.27)

• Replace M^2 with t

Future EIC

• We may also perform impact studies for the EIC

 Statistical uncertainties are small compared with HERA, and uncertainties will be dominated by systematics