Tomography of pions and protons via transverse momentum dependent distributions

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Based on: arXiv:2302.01192

P. C. Barry acknowledges financial support from The Gordon and Betty Moore Foundation and the American Physical Society to present this work at the GHP 2023 workshop.
What do we know about structures?

• Most well-known structure is through longitudinal structure of hadrons, particularly protons

Other structures?

• To give deeper insights into color confined systems, we shouldn’t limit ourselves to proton structures

• Pions are also important because of their Goldstone-boson nature while also being made up of quarks and gluons
Available datasets for pion structures

• Much less available data than in the proton case

• Still valuable to study
Available datasets for pion structures

- Much less available data than in the proton case
- Still valuable to study
Pion PDFs in JAM

Drell-Yan (DY)

Leading Neutron (LN)

Threshold resummation in DY

barryp@jlab.org
3D structures of hadrons

• Even more challenging is the 3d structure through GPDs and TMDs
Unpolarized TMD PDF

\[\tilde{f}_{q/N}(x, b_T) = \int \frac{db^{-}}{4\pi} e^{-ixP^{+}b_-} \text{Tr} \left[\langle N | \bar{\psi}_q(b)\gamma^+ \mathcal{W}(b, 0)\psi_q(0) | N \rangle \right] \]

\[b \equiv (b^-, 0^+, b_T) \]

- \(b_T \) is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, \(k_T \)
- We can learn about the coordinate space correlations of quark fields in hadrons
- Modification needed for UV and rapidity divergences; acquire regulators: \(\tilde{f}_{q/N}(x, b_T) \rightarrow \tilde{f}_{q/N}(x, b_T; \mu, \zeta) \)

barryp@jlab.org
Factorization for low-q_T Drell-Yan

- Like collinear observable, a **hard part** with two functions that describe structure of beam and target
- So called “W”-term, valid only at low-q_T

\[
\frac{d^3\sigma}{d\tau dY dq_T^2} = \frac{4\pi^2\alpha^2}{9\tau S^2} \sum_q H_{q\bar{q}}(Q^2, \mu) \int d^2b_T e^{i b_T \cdot q_T} \times \tilde{f}_q(x, b_T, \mu, Q^2) \tilde{f}_{\bar{q}/A}(x_A, b_T, \mu, Q^2),
\]
TMD PDF within the b_* prescription

\[b_*(b_T) \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\text{max}}^2}}. \]

\[\tilde{f}_{q/N(A)}(x, b_T, \mu_Q, Q^2) = (C \otimes f)_{q/N(A)}(x; b_*) \]

\[\times \exp \left\{ -g_{q/N(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0} - S(b_*, Q_0, Q, \mu_Q) \right\} \]

- Low-b_T: perturbative
- High-b_T: non-perturbative

Relates the TMD at small-b_T to the collinear PDF
\[\Rightarrow \text{TMD is sensitive to collinear PDFs} \]

$g_{q/N(A)}$: intrinsic non-perturbative structure of the TMD

g_K: universal non-perturbative Collins-Soper kernel

Controls the perturbative evolution of the TMD
A few details

• Nuclear TMD model linear combination of bound protons and neutrons
 • Include an additional A-dependent nuclear parameter

• We use the MAP collaboration’s parametrization for non-perturbative TMDs
 • Only tested parametrization flexible enough to capture features of Q bins

• Perform a **simultaneous global analysis** of pion TMD and collinear PDFs, with proton (nuclear) TMDs
 • Include both q_T-dependent and collinear pion data and fixed-target pA data
Data and theory agreement

- Fit both pA and πA DY data and achieve good agreement to both

<table>
<thead>
<tr>
<th>Process</th>
<th>Experiment</th>
<th>\sqrt{s} GeV</th>
<th>χ^2/np</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_T-integ. DY $\pi W \rightarrow \mu^+\mu^- X$</td>
<td>E615 [37]</td>
<td>21.8</td>
<td>0.86</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>NA10 [38]</td>
<td>19.1</td>
<td>0.54</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>NA10 [38]</td>
<td>23.2</td>
<td>0.91</td>
<td>0.18</td>
</tr>
<tr>
<td>Leading neutron $ep \rightarrow e' n X$</td>
<td>H1 [73]</td>
<td>318.7</td>
<td>0.36</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>ZEUS [74]</td>
<td>300.3</td>
<td>1.48</td>
<td>2.16</td>
</tr>
<tr>
<td>q_T-dep. pA DY $pA \rightarrow \mu^+\mu^- X$</td>
<td>E288 [67]</td>
<td>19.4</td>
<td>0.93</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>E288 [67]</td>
<td>23.8</td>
<td>1.33</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>E288 [67]</td>
<td>24.7</td>
<td>0.95</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>E605 [68]</td>
<td>38.8</td>
<td>1.07</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>E772 [69]</td>
<td>38.8</td>
<td>2.41</td>
<td>5.74</td>
</tr>
<tr>
<td></td>
<td>E866 (Fe/Be) [70]</td>
<td>38.8</td>
<td>1.07</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>E866 (W/Be) [70]</td>
<td>38.8</td>
<td>0.89</td>
<td>0.11</td>
</tr>
<tr>
<td>q_T-dep. πA DY $\pi W \rightarrow \mu^+\mu^- X$</td>
<td>E615 [37]</td>
<td>21.8</td>
<td>1.61</td>
<td>2.58</td>
</tr>
<tr>
<td></td>
<td>E537 [71]</td>
<td>15.3</td>
<td>1.11</td>
<td>0.57</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.15</td>
<td>2.55</td>
<td></td>
</tr>
</tbody>
</table>
• The small-q_T data do not constrain much the PDFs
Resulting TMD PDFs of proton and pion

\[\tilde{f}_{q/N}(b_T|x; Q, Q^2) = \frac{\tilde{f}_{q/N}(x, b_T; Q, Q^2)}{\int d^2 b_T \tilde{f}_{q/N}(x, b_T; Q, Q^2)} \]

- Broadening appearing as \(x \) increases
- Up quark in pion is narrower than up quark in proton

\[b_T \tilde{f}_{u/p}(b_T|x) \]

\[x = 0.60 \]
\[x = 0.54 \]
\[x = 0.48 \]
\[x = 0.42 \]
\[x = 0.36 \]
\[x = 0.30 \]

\[b_T (\text{fm}) \]

\[b_T (\text{fm}) \]
Resulting average b_T

$$\langle b_T | x \rangle_{q/N} = \int d^2 b_T b_T \tilde{f}_{q/N}(b_T | x; Q, Q^2)$$

- Average transverse spatial correlation of the up quark in proton is ~ 1.2 times bigger than that of pion
- Pion’s $\langle b_T | x \rangle$ is $5.3 - 7.5\sigma$ smaller than proton in this range
- Decreases as x decreases
Possible explanation

• At large x, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron
Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system
Outlook

• Future studies needed for theoretical explanations of these phenomena

• Lattice QCD can in principle calculate any hadronic state – look to kaons, rho mesons, etc.

• Future tagged experiments such as at EIC and JLab 22 GeV can provide measurements for neutrons, pions, and kaons

• We should study other ways to formulate the TMD such as: Qiu-Zhang method, the ζ-prescription, or the hadron structure oriented approach
Backup
Small b_T operator product expansion

• At small b_T, the TMDPDF can be described in terms of its OPE:

$$f_{f/h}(x, b_T; \mu, \zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{C}_{f/j}(x/\xi, b_T; \zeta_F, \mu) f_{j/h}(\xi; \mu) + \mathcal{O}((\Lambda_{QCD} b_T)^a)$$

• where \tilde{C} are the Wilson coefficients, and $f_{j/h}$ is the collinear PDF

• Breaks down when b_T gets large
b_* prescription

- A common approach to regulating large b_T behavior

$$b_*(b_T) \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\text{max}}^2}}.$$

- At small b_T, $b_*(b_T) = b_T$
- At large b_T, $b_*(b_T) = b_{\text{max}}$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics
Introduction of non-perturbative functions

- Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

\[
g_K(b_T; b_{\text{max}}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)
\]

 Completely general – independent of quark, hadron, PDF or FF

Non-perturbative function dependent in principle on flavor, hadron, etc.

\[
e^{-g_{j/H}(x, b_T; b_{\text{max}})} = \frac{\tilde{f}_{j/H}(x, b_T; \zeta, \mu)}{\tilde{f}_{j/H}(x, b_*; \zeta, \mu)} e^{g_K(b_T; b_{\text{max}}) \ln(\sqrt{\zeta}/Q_0)}.
\]
TMD factorization in Drell-Yan

- In small-q_T region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

\[
\frac{d\sigma}{dQ^2 dy dq_T^2} = \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j,j_A,j_B} H_{jj}^{DY}(Q, \mu_Q, a_s(\mu_Q)) \int \frac{d^2b_T}{(2\pi)^2} e^{i q_T \cdot b_T} \]

Can these data constrain the pion collinear PDF?

Non-perturbative pieces

Non-perturbative piece of the CS kernel

Perturbative pieces
MAP parametrization

• A recent work from the MAP collaboration (arXiv:2206.07598) used a complicated form for the non-perturbative function

\[f_{1NP}(x, b_T^2; \zeta, Q_0) = \frac{g_1(x) e^{-g_1(x) \frac{b_T^2}{4}} + \lambda^2 g_{1B}^2(x) \left[1 - g_{1B}(x) \frac{b_T^2}{4} \right] e^{-g_{1B}(x) \frac{b_T^2}{4}} + \lambda_2^2 g_{1C}(x) e^{-g_{1C}(x) \frac{b_T^2}{4}}}{g_1(x) + \lambda^2 g_{1B}^2(x) + \lambda_2^2 g_{1C}(x)} \left[\frac{\zeta}{Q_0^2} \right]^{g_K(b_T^2)/2} \]

(38)

\[g_{\{1,1B,1C\}}(x) = N_{\{1,1B,1C\}} \frac{x^{\sigma_{\{1,2,3\}}} (1 - x)^{\alpha_{\{1,2,3\}}}}{\hat{x}^{\sigma_{\{1,2,3\}}} (1 - \hat{x})^{\alpha_{\{1,2,3\}}}} , \]

• 11 free parameters for each hadron! (flavor dependence not necessary) (12 if we include the nuclear TMD parameter)

\[g_K(b_T^2) = -g_2^2 \frac{b_T^2}{2} \quad \text{Universal CS kernel} \]
Resulting χ^2 for each parametrization

- Tried multiple parametrizations for non-perturbative TMD structures
- MAP parametrization is able to describe better all the datasets
Nuclear TMD PDFs – working hypothesis

• We must model the nuclear TMD PDF from proton

\[
\tilde{f}_{q/A}(x, b_T, \mu, \zeta) = \frac{Z}{A} \tilde{f}_{q/p/A}(x, b_T, \mu, \zeta) + \frac{A - Z}{A} \tilde{f}_{q/n/A}(x, b_T, \mu, \zeta)
\]

• Each object on the right side independently obeys the CSS equation
 • Assumption that the bound proton and bound neutron follow TMD factorization

• Make use of isospin symmetry in that \(u/p/A \leftrightarrow d/n/A\), etc.
Building of the nuclear TMD PDF

• Then taking into account the intrinsic non-perturbative, we model the flavor-dependent pieces of the TMD PDF as

\[
(C \otimes f)_{u/A}(x)e^{-g_{u/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}
\]

\[
+ \frac{A-Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}
\]

and

\[
(C \otimes f)_{d/A}(x)e^{-g_{d/A}(x,b_T)} \rightarrow \frac{Z}{A}(C \otimes f)_{d/p/A}(x)e^{-g_{d/p/A}(x,b_T)}
\]

\[
+ \frac{A-Z}{A}(C \otimes f)_{u/p/A}(x)e^{-g_{u/p/A}(x,b_T)}.
\]
Nuclear TMD parametrization

• Specifically, we include a parametrization similar to Alrashed, et al., Phys. Rev. Lett 129, 242001 (2022).

\[g_{q/N/A} = g_{q/N} \left(1 - a_N \left(A^{1/3} - 1 \right) \right) \]

• Where \(a_N \) is an additional parameter to be fit
Datasets in the q_T-dependent analysis

<table>
<thead>
<tr>
<th>Expt.</th>
<th>\sqrt{s} (GeV)</th>
<th>Reaction</th>
<th>Observable</th>
<th>Q (GeV)</th>
<th>x_F or y</th>
<th>$N_{pts.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E288 [39]</td>
<td>19.4</td>
<td>$p + Pt \rightarrow \ell^+ \ell^- X$</td>
<td>$E d^3 \sigma / d^3 q$</td>
<td>4 – 9</td>
<td>$y = 0.4$</td>
<td>38</td>
</tr>
<tr>
<td>E288 [39]</td>
<td>23.8</td>
<td>$p + Pt \rightarrow \ell^+ \ell^- X$</td>
<td>$E d^3 \sigma / d^3 q$</td>
<td>4 – 12</td>
<td>$y = 0.21$</td>
<td>48</td>
</tr>
<tr>
<td>E288 [39]</td>
<td>24.7</td>
<td>$p + Pt \rightarrow \ell^+ \ell^- X$</td>
<td>$E d^3 \sigma / d^3 q$</td>
<td>4 – 14</td>
<td>$y = 0.03$</td>
<td>74</td>
</tr>
<tr>
<td>E605 [40]</td>
<td>38.8</td>
<td>$p + Cu \rightarrow \ell^+ \ell^- X$</td>
<td>$E d^3 \sigma / d^3 q$</td>
<td>7 – 18</td>
<td>$x_F = 0.1$</td>
<td>49</td>
</tr>
<tr>
<td>E772 [41]</td>
<td>38.8</td>
<td>$p + D \rightarrow \ell^+ \ell^- X$</td>
<td>$E d^3 \sigma / d^3 q$</td>
<td>5 – 15</td>
<td>$0.1 \leq x_F \leq 0.3$</td>
<td>61</td>
</tr>
<tr>
<td>E866 [50]</td>
<td>38.8</td>
<td>$p + Fe \rightarrow \ell^+ \ell^- X$</td>
<td>R_{FeBe}</td>
<td>4 – 8</td>
<td>$0.13 \leq x_F \leq 0.93$</td>
<td>10</td>
</tr>
<tr>
<td>E866 [50]</td>
<td>38.8</td>
<td>$p + W \rightarrow \ell^+ \ell^- X$</td>
<td>R_{WBe}</td>
<td>4 – 8</td>
<td>$0.13 \leq x_F \leq 0.93$</td>
<td>10</td>
</tr>
<tr>
<td>E537 [38]</td>
<td>15.3</td>
<td>$\pi^- + W \rightarrow \ell^+ \ell^- X$</td>
<td>$d^2 \sigma / dx_F dq_T$</td>
<td>4 – 9</td>
<td>$0 < x_F < 0.8$</td>
<td>48</td>
</tr>
<tr>
<td>E615 [4]</td>
<td>21.8</td>
<td>$\pi^- + W \rightarrow \ell^+ \ell^- X$</td>
<td>$d^2 \sigma / dx_F dq_T^2$</td>
<td>4.05 – 8.55</td>
<td>$0 < x_F < 0.8$</td>
<td>45</td>
</tr>
</tbody>
</table>

- Total of 383 number of points
- All fixed target, low-energy data
- We perform a cut of $q_T^{\text{max}} < 0.25 \ Q$

barryp@jlab.org
Transverse EMC effect

• Compare the average b_T given x for the up quark in the bound proton to that of the free proton
• Less than 1 by $\sim 5 - 10\%$ over the x range