Simultaneous Global Analysis of Di-Hadron Fragmentation Functions and Transversity PDFs

June 22, 2023

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

JAM Collaboration

- 3-dimensional structure of nucleons:
- Parton distribution functions (PDFs)
- Fragmentation functions (FFs)
- Transverse momentum dependent distributions (TMDs)
- Generalized parton distributions (GPDs)

- Collinear factorization in perturbative QCD
- Simultaneous determinations of PDFs, FFs, etc.
- Monte Carlo methods for Bayesian inference

Approaches to Extract Transversity

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018)

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018)

TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Approaches to Extract Transversity

Dihadron Frag.

- Radici + Bacchetta (RB18)
- Benel + Courtoy + Ferro-Hernandez (2020)

M. Radici and A. Bacchetta, Phys. Rev. Lett. **120**, no. 19, 192001 (2018) TMD + Collinear Twist-3

• JAM3D

L. Gamberg et al., Phys. Rev. D 106, no. 3, 034014 (2022)

Lattice QCD

- ETMC Collaboration
- PNDME Collaboration
- LHPC Collaboration

C. Alexandrou et al., Phys. Rev. D 104, no. 5, 054503 (2021)

JAM Global Analysis in the collinear DiFF Approach

R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

Tensor Charges

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

 $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$
 $g_T \equiv \delta u - \delta d,$

Tensor Charges 7

Figure taken from D. Pitonyak

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $g_T \equiv \delta u - \delta d,$

QCD Pheno for Transversity

> Tensor Charges

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022)

> Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

Tensor Charges

 $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$

 $g_T \equiv \delta u - \delta d,$

QCD Pheno for Transversity

> Tensor Charges

> > Lattice QCD, Models

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022)

> Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

> > He, Ji (1995); Barone, *et al.* (1997); Schweitzer, et al. (2001); Gamberg, Goldstein (2001); Pasquini, et al. (2005); Wakamatsu (2007); Lorce (2009); Gupta, et al. (2018); Yamanaka, et al. (2018); Hasan, *et al.* (2019); Alexandrou, et al. (2019, 2023) Yamanaka, *et al.* (2013); Pitschmann, et al. (2015); Xu, et al. (2015); Wang, *et al.* (2018); Liu, *et al.* (2019)

Figure taken from D. Pitonyak

Tensor Charges

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$
$$\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$$

 $g_T \equiv \delta u - \delta d,$

Herczeg (2001); Erler, Ramsey-Musolf (2005); Pospelov, Ritz (2005); Severijns, *et al.* (2006); Cirigliano, *et al.* (2013); Courtoy, *et al.* (2013); Yamanaka, *et al.* (2015); Yamanaka, *et al.* (2017); Liu, *et al.* (2018); Gonzalez-Alonso, *et al.* (2019)

Figure taken from D. Pitonyak

QCD Pheno for Transversity

Tensor Charges

Low-Energy BSM Physics

Lattice QCD, Models

Anselmino, *et al.* (2007, 2009, 2013, 2015); Goldstein, *et al.* (2014); Kang, *et al.* (2016); D'Alesio, *et al.* (2020); Cammarota, *et al.* (2020); Gamberg, *et al.* (2022)

> Radici, *et al.* (2013, 2015, 2018); Benel, *et al.* (2020); Cocuzza, *et al.* (2023)

> > He, Ji (1995); Barone, et al. (1997); Schweitzer, et al. (2001); Gamberg, Goldstein (2001); Pasquini, et al. (2005); Wakamatsu (2007); Lorce (2009); Gupta, et al. (2018); Yamanaka, et al. (2018); Hasan, et al. (2019); Alexandrou, et al. (2019, 2023) Yamanaka, *et al.* (2013); Pitschmann, et al. (2015); Xu, *et al.* (2015); Wang, *et al.* (2018); Liu, et al. (2019)

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs Extraction of Tensor Charges

5. Conclusions and Outlook

Observables for DiFFs

R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}M_h} = \frac{4\pi\alpha_{\mathrm{em}}^2}{s} \sum_q e_q^2 \, D_1^q(z, M_h)$$

10

Observables for DiFFs

SIA Artru-Collins Asymmetry

A. Vossen et al., Phys. Rev. Lett. 107, 072004 (2011)

$$\frac{d\sigma}{dz\,dM_h} = \frac{4\pi\alpha_{em}^2}{s} \sum_q e_q^2 D_1^q(z, M_h) \qquad A^{e^+e^-}(z, M_h, \bar{z}, \overline{M}_h) = \frac{\sin^2\theta \sum_q e_q^2 H_1^{\triangleleft,q}(z, M_h) H_1^{\triangleleft,\bar{q}}(\bar{z}, \overline{M}_h)}{(1 + \cos^2\theta) \sum_q e_q^2 D_1^q(z, M_h) D_1^{\bar{q}}(\bar{z}, \overline{M}_h)}$$

Data for DiFFs

SIA cross section	Belle	1121	points
SIA Artru-Collins	Belle	183	points

11

Data for DiFFs

 $\pi^+\pi^-$ DiFFs

 $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$ $D_1^s = D_1^{\bar{s}}, \quad D_1^c = D_1^{\bar{c}}, \quad D_1^b = D_1^{\bar{b}},$ $5 \text{ independent functions } (w/D_1^g)$ [supplement with PYTHIA data]

Data for DiFFs

SIA cross section	Belle	1121	points
SIA Artru-Collins	Belle	183	points

 $\pi^+\pi^-$ DiFFs

 $D_1^u = D_1^d = D_1^{\bar{u}} = D_1^{\bar{d}},$ $D_1^s = D_1^{\bar{s}}, \quad D_1^c = D_1^{\bar{c}}, \quad D_1^b = D_1^{\bar{b}},$ $5 \text{ independent functions (w/ <math>D_1^g)$ [supplement with PYTHIA data]

$$\begin{split} H_{1}^{\triangleleft,u} &= -H_{1}^{\triangleleft,d} = -H_{1}^{\triangleleft,\bar{u}} = H_{1}^{\triangleleft,\bar{d}}, \\ H_{1}^{\triangleleft,s} &= -H_{1}^{\triangleleft,\bar{s}} = H_{1}^{\triangleleft,c} = -H_{1}^{\triangleleft,\bar{c}} = 0, \\ & 1 \text{ independent function} \end{split}$$

A. Courtoy et al., Phys. Rev. D 85, 114023 (2012)

Quality of Fit (Unpolarized Cross Section)

R. Seidl et al., Phys. Rev. D 96, 032005 (2017)

Quality of Fit (Artru-Collins Asymmetry)

14

Extracted DiFFs

 $< D_1^q$

(2003)

Extracted IFFs

Observables for Transversity PDFs

SIDIS asymmetry (*p* and *D*)

$$A_{UT}^{\text{SIDIS}} = c(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\triangleleft,q}(z, M_{h})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z, M_{h})}$$

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

Observables for Transversity PDFs

SIDIS asymmetry (*p* and *D*)

$$A_{UT}^{\text{SIDIS}} = c(y) \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\triangleleft,q}(z, M_h)}{\sum_{q} e_q^2 f_1^q(x) D_1^q(z, M_h)}$$

C. Adolph et al., Phys. Lett. B 713, 10-16 (2012)

 $A_{UT}^{pp} = \frac{\mathscr{H}(M_h, P_{hT}, \eta)}{\mathscr{D}(M_h, P_{hT}, \eta)}$

L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015)

$$\mathscr{H}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) \frac{h_{1}^{b}(x_{b})}{\mathrm{d}\hat{t}} \frac{\mathrm{d}\Delta\hat{\sigma}_{ab^{\uparrow}\to c^{\uparrow}d}}{\mathrm{d}\hat{t}} H_{1}^{\triangleleft,c}(z, M_{h})$$
$$\mathscr{D}(M_{h}, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c} \int_{x_{a}^{\min}}^{1} \mathrm{d}x_{a} \int_{x_{b}^{\min}}^{1} \frac{\mathrm{d}x_{b}}{z} f_{1}^{a}(x_{a}) f_{1}^{b}(x_{b}) \frac{\mathrm{d}\hat{\sigma}_{ab\to cd}}{\mathrm{d}\hat{t}} D_{1}^{c}(z, M_{h})$$

Data for PDFs

Data for PDFs

Parameterization Choices

3 independent observables 3 independent functions

Data for PDFs

Parameterization Choices

3 independent observables 3 independent functions

P. V. Pobylitsa, arXiv:hep-ph/0301236 (2003)

Quality of Fit

Experiment	$N_{ m dat}$	$\chi^2_{ m red}$
Belle (cross section)	1094	1.05
Belle (Artru-Collins)	183	0.78
HERMES	12	1.09
COMPASS (p)	26	0.75
COMPASS (D)	26	0.74
STAR (2015)	24	1.83
STAR (2018)	106	1.06
Total	1471	1.02

20

Quality of Fit (SIDIS)

A. Airapetian *et al.*, JHEP **06**, 017 (2008)

COMPASS, arXiv:hep-ph/2301.02013 (2023)

Quality of Fit (STAR $\sqrt{s} = 200$ GeV)

Quality of Fit (STAR $\sqrt{s} = 500 \text{ GeV}$)

Transversity PDFs

Transversity PDFs

Transversity PDFs JAMDiFF (no LQCD) 0.4 JAM3D* (no LQCD) Radici, Bacchetta (2018) 0.3 JAM3D* = JAM3D-22 (no LQCD) 0.2+ Antiquarks w/ $\bar{u} = -d$ 0.1+ small-*x* constraint (see slide 23) 0.0

Agreement between all
three analyses within errors
Soffer Bound:
$$|h_1^q| < \frac{1}{2}[f_1^q + g_1^q]$$

J. Soffer, Phys. Rev. Lett. 74, 1292-1294 (1995)

23

 xh^{u_v}

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs Extraction of Tensor Charges Conclusions and Outlook

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

$$\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$$

$$g_T \equiv \delta u - \delta d,$$

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{ar{u}}),$$

 $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{ar{d}}),$
 $g_T \equiv \delta u - \delta d,$

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{ar{u}}),$$

 $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{ar{d}}),$
 $g_T \equiv \delta u - \delta d,$

$$\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$$

$$\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$$

$$g_T \equiv \delta u - \delta d,$$

Large
$$x \gtrsim 0.3$$

Soffer Bound: $|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$

J. Soffer, Phys. Rev. Lett. 74, 1292-1294 (1995)

Tensor Charges

Tensor Charges

Tensor Charges

26

Consistent with RB18 and JAM3D* (no LQCD). What happens if we include LQCD in the fit?

 $\begin{aligned} \text{LATTICE} \\ \textbf{(full moments)} \\ \delta u &\equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}), \\ \delta d &\equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}), \\ g_T &\equiv \delta u - \delta d, \end{aligned}$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Presently, trivial to find compatibility between any two

LATTICE (full moments) $\delta u \equiv \int_0^1 \mathrm{d}x (h_1^u - h_1^{\bar{u}}),$ $\delta d \equiv \int_0^1 \mathrm{d}x (h_1^d - h_1^{\bar{d}}),$ $g_T \equiv \delta u - \delta d,$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Presently, trivial to find compatibility between any two $egin{aligned} & ext{LATTICE}\ (ext{full moments})\ \delta u \equiv \int_0^1 \mathrm{d} x (h_1^u - h_1^{ar{u}}),\ \delta d \equiv \int_0^1 \mathrm{d} x (h_1^d - h_1^{ar{d}}),\ g_T \equiv \delta u - \delta d, \end{aligned}$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Presently, trivial to find compatibility between any two

$$\begin{aligned} \text{LATTICE} \\ \textbf{(full moments)} \\ \delta u &\equiv \int_0^1 \mathrm{d} x (h_1^u - h_1^{\bar{u}}), \\ \delta d &\equiv \int_0^1 \mathrm{d} x (h_1^d - h_1^{\bar{d}}), \\ g_T &\equiv \delta u - \delta d, \end{aligned}$$

THEORY (unmeasured regions) $|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$ $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Presently, trivial to find compatibility between any two

$$\begin{aligned} \text{LATTICE} \\ \textbf{(full moments)} \\ \delta u &\equiv \int_0^1 \mathrm{d} x (h_1^u - h_1^{\bar{u}}), \\ \delta d &\equiv \int_0^1 \mathrm{d} x (h_1^d - h_1^{\bar{d}}), \\ g_T &\equiv \delta u - \delta d, \end{aligned}$$

THEORY
(unmeasured regions)
$$|h_1^q| < \frac{1}{2} [f_1^q + g_1^q]$$

 $\alpha_q = 1 - 2\sqrt{\frac{\alpha_s N_c}{2\pi}}$

Experiment + Lattice + Theory

Quality of Fit

		$\chi^2_{ m red}$	
Experiment	$N_{ m dat}$	no LQCD	w/ LQCD
Belle (cross section)	1094	1.05	1.06
Belle (Artru-Collins)	183	0.78	0.78
HERMES	12	1.09	1.12
COMPASS (p)	26	0.75	1.25
COMPASS (D)	26	0.74	0.78
STAR (2015)	24	1.83	1.59
STAR (2018)	106	1.06	1.18
ETMC δu	1		0.55
${\rm ETMC}\delta d$	1		1.10
PNDME δu	1		8.20
PNDME δd	1		0.03
Total	1475	1.02	1.05

Quality of Fit

Physical Pion Mass
$N_f = 2 + 1 + 1$
Use δu and δd instead of g_T

		$\chi^2_{ m red}$	
Experiment	$N_{ m dat}$	no LQCD	w/ LQCD
Belle (cross sec	tion) $ 1094 $	1.05	1.06
Belle (Artru-Co	ollins $) 183 $	0.78	0.78
HERMES	12	1.09	1.12
COMPASS (p)	26	0.75	1.25
COMPASS (D)	26	0.74	0.78
STAR (2015)	24	1.83	1.59
STAR (2018)	106	1.06	1.18
ETMC δu	1		0.55
ETMC δd	1		1.10
PNDME δu	1		8.20
PNDME δd	1		0.03
Total	1475	1.02	1.05

Transversity PDFs (w/ LQCD)

Transversity PDFs (w/ LQCD)

JAM3D* = JAM3D-22 (w/ LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 23) + δu , δd from ETMC & PNDME (instead of g_T from ETMC)

Transversity PDFs (w/ LQCD)

JAM3D* = JAM3D-22 (w/ LQCD) + Antiquarks w/ $\bar{u} = -\bar{d}$ + small-*x* constraint (see slide 23) + δu , δd from ETMC & PNDME (instead of g_T from ETMC) 29

JAMDiFF (w/ LQCD) and JAM3D* (w/ LQCD) largely agree
Extraction of Tensor Charges

Tensor Charges (w/ LQCD)

Extraction of Tensor Charges

Tensor Charges (w/ LQCD)

30

Noticeable shift from including lattice data

Extraction of Tensor Charges

Tensor Charges (w/ LQCD)

Noticeable shift from including lattice data

Likelihood function $\mathscr{L} = \exp(-\chi^2/2)$ does not guarantee that errors overlap

JAM Methodology Extraction of DiFFs Extraction of Transversity PDFs Extraction of Tensor Charges Conclusions and Outlook

Comprehensive Analysis of DiFFs and Transversity

32

First inclusion of Belle cross section data

Comprehensive Analysis of DiFFs and Transversity

First inclusion of Belle cross section data

Comprehensive Analysis of DiFFs and Transversity

Utilized all binnings for Artru-Collins and SIDIS asymmetries

Comprehensive Analysis of DiFFs and Transversity

First simultaneous analysis of DiFFs and transversity PDFs

First inclusion of

Conclusions

Simultaneous extraction of DiFFs and transversity PDFs

Conclusions

Simultaneous extraction of DiFFs and transversity PDFs

Universality of all available information on transversity

Outlook

More data from RHIC Proton-proton cross section

Outlook

More data from RHIC Proton-proton cross section

SIDIS multiplicities from COMPASS

N. Makke, Phys. Part. Nucl. 45, 138-140 (2014)

Outlook

More data from RHIC Proton-proton cross section

SIDIS multiplicities from COMPASS

L. Gamberg et al., Phys. Lett. B 816, 136255 (2021)

34

EIC can provide new information

N. Makke, Phys. Part. Nucl. 45, 138-140 (2014)

Outlook

More data from RHIC Proton-proton cross section

SIDIS multiplicities from COMPASS

N. Makke, Phys. Part. Nucl. 45, 138-140 (2014)

L. Gamberg et al., Phys. Lett. B 816, 136255 (2021)

34

EIC can provide new information

Simultaneous fit of DiFF channel + TMD channel + Lattice QCD

Collaboration

Andreas Metz

Nobuo Sato

Daniel Pitonyak

Alexey Prokudin

Ralf Seidl

Thank you to Yiyu Zhou and Patrick Barry for helpful discussions

Extra Slides

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

Evolve PDFs using DGLAP
$$\frac{d}{d \ln(\mu^2)} f_i(x,\mu) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z,\mu) f_j(\frac{x}{z},\mu)$$

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$

Calculate Observables

$$d\sigma^{pp} = \sum_{ij} H^{pp}_{ij} \otimes f_i \otimes f_j$$

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

$$f_i(x) = Nx^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\eta x)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$

Calculate Observables

$$d\sigma^{pp} = \sum_{ij} H^{pp}_{ij} \otimes f_i \otimes f_j$$

$$d\sigma^{pp} = \sum_{ijkl} \frac{1}{(2\pi i)^2} \int dN \int dM \tilde{f}_j(N,\mu_0) \tilde{f}_l(M,\mu_0)$$
$$\otimes \left[x_1^{-N} x_2^{-M} \tilde{\mathcal{H}}_{ik}^{pp}(N,M,\mu) U_{ij}^S(N,\mu,\mu_0) U_{kl}^S(M,\mu,\mu_0) \right]$$

Parameterize PDFs at input scale
$$Q_0^2 = m_c^2$$

 $f_i(x) = Nx^{\alpha}(1-x)^{\beta}(1+\gamma\sqrt{x}+\eta x)$
Evolve PDFs using DGLAP

$$\frac{d}{d \ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$
Calculate Observables
 $d\sigma^{pp} = \sum_{ijkl} \frac{1}{(2\pi i)^2} \int dN \int dM \tilde{f}_j(N,\mu_0) \tilde{f}_l(M,\mu_0)$
 $\otimes [x_1^{-N} x_2^{-M} \tilde{\mathcal{H}}_{ik}^{pp}(N,M,\mu) U_{ij}^S(N,\mu,\mu_0) U_{kl}^S(M,\mu,\mu_0)]$

$$\sigma = \sum_{ij} H_{ij} \otimes f_i \otimes f_j + \mathcal{O}(1/Q)$$

Now that the observables have been calculated...

$$\left| \chi^2(\boldsymbol{a}) = \sum_{i,e} \left(\frac{d_{i,e} - \sum_k r_e^k \beta_{i,e}^k - T_{i,e}(\boldsymbol{a})/N_e}{\alpha_{i,e}} \right)^2 + \sum_k \left(r_e^k \right)^2 + \left(\frac{1 - N_e}{\delta N_e} \right)^2 \right|$$

Now that the observables have been calculated...

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^2(\boldsymbol{a}, \text{data})\right)$$

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^2(\boldsymbol{a}, \text{data})\right)$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \sim \mathcal{L}(\boldsymbol{a}, \text{data}) \pi(\boldsymbol{a}) \end{array}$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \text{Frior Beliefs} \end{array}$$

 $\left| \tilde{\sigma} = \sigma + N(0,1) \alpha \right|$

 $|\tilde{\sigma} = \sigma + N(0,1) \alpha$ Data

 $E[O] = \int d^{n}a \ \rho(\boldsymbol{a} \mid data) \ O(\boldsymbol{a})$ $V[O] = \int d^{n}a \ \rho(\boldsymbol{a} \mid data) \ \left[O(\boldsymbol{a}) - E[O]\right]^{2}$

Exact, but $n = \mathcal{O}(100)!$

Exact, but

 $\begin{bmatrix} E[O] = \int d^n a \ \rho(\mathbf{a} \mid data) \ O(\mathbf{a}) \\ V[O] = \int d^n a \ \rho(\mathbf{a} \mid data) \ \left[O(\mathbf{a}) - E[O] \right]^2 \end{bmatrix}$ $n = \mathcal{O}(100)!$ Build an MC ensemble

 $E[O] = \int d^n a \ \rho(\boldsymbol{a} \,|\, data) \ O(\boldsymbol{a})$ $V[O] = \left[d^n a \ \rho(\boldsymbol{a} \,|\, data) \ \left[O(\boldsymbol{a}) - E[O] \right]^2 \right]$ Build an MC ensemble $\left| E[O] \approx \frac{1}{N} \sum_{k} O(a_{k}) \right|$ $V[O] \approx \frac{1}{N} \sum_{k}^{k} \left[O(a_{k}) - E[O] \right]^{2}$

Exact, but $n = \mathcal{O}(100)!$

Average over k sets of the parameters (replicas)

$$E[O] = \int d^{n}a \ \rho(a \ | \ data) \ O(a)$$

$$V[O] = \int d^{n}a \ \rho(a \ | \ data) \ \left[O(a) - E[O]\right]^{2}$$

Build an MC ensemble

$$E[O] \approx \frac{1}{N} \sum_{k}^{N} O(a_{k})$$

$$V[O] \approx \frac{1}{N} \sum_{k}^{k} \left[O(a_{k}) - E[O]\right]^{2}$$

Average of of the part (replice)

t, but 100)!

ver k sets ameters cas)

 $\{\vec{p}^{(j)}\}$ $T data_1$ fit_1 pseudo $data_1$ $\vec{a}^{(1)}$ $V data_1$ validation data $\{\vec{p}^{(j)}\}$ T data $_2$ fit_2 \mathbf{pseudo} $data_2$ V data₂ $\vec{a}^{(2)}$ validation $\mathbf{ensemble}$ fit_K $\{\vec{p}^{(j)}\}$ T data_K pseudo $data_K$ V data_K $\vec{a}^{(K)}$ validation new priors priors

PYTHIA data ($\sqrt{s} = 10.58$ GeV)

PYTHIA data ($\sqrt{s} = 30.73$ GeV)

PYTHIA data ($\sqrt{s} = 50.88$ GeV)

PYTHIA data ($\sqrt{s} = 71.04$ GeV)

PYTHIA data ($\sqrt{s} = 91.19$ GeV)

Transversity PDFs (antiquarks)

DiFF Parameterization

 $\mathbf{M}_{h}^{u} = [2m_{\pi}, 0.40, 0.50, 0.70, 0.75, 0.80, 0.90, 1.00, 1.20, 1.30, 1.40, 1.60, 1.80, 2.00] \text{ GeV}.$

$$D_1^q(z, \mathbf{M}_h^{q,i}) = \sum_{j=1,2,3} \frac{N_{ij}^q}{\mathcal{M}_{ij}^q} z^{\alpha_{ij}^q} (1-z)^{\beta_{ij}^q},$$

204 parameters for D_1 48 parameters for H_1^{\triangleleft}

PDF Parameterization

$$h_1^{u_v}$$

$$h_1^{d_v}$$

$$h_1^{\bar{u}} = -h_1^{\bar{d}}$$

$$f(x,\mu_0^2) = rac{N}{\mathcal{M}} x^{lpha} (1-x)^{eta} (1+\gamma\sqrt{x}+\eta x),$$

52

15 parameters for h_1

Tensor Charge Numbers

Fit	δu	δd	g_T
no LQCD	0.50(7)	-0.04(14)	0.54(12)
w/ LQCD	0.71(2)	-0.200(6)	0.91(2)

