Start the docker

docker pull electronioncollider/escalate

eic.gitlab.io / documents / quickstart

JLUO EIC Software tutorials

1dsca2y

5

June 24, 2020

Entry point for EIC software

Interactive tutorial
Fast and full simulations
In ESCalate

Dmitry Romanov

docker pull electronioncollider/epic-gui

Plan now:

- Short introduction to our software
- 1. Tutorial running fast simulation
- 2. Tutorial running in different environments
- 2. Tutorial running full simulation
- 3 PM Answering questions (presentation)
- Adjourn!

Software chain

Software chain

Software stack for EIC simulations

ESC – EIC Software and Computing group

Software version table

electronioncollider/escalate v 1.0.1

(Changed packet versions are bold)

Core tools		HENP		MCEG		EIC	
Packet	Version	Packet	Version	Packet	Version	Packet	Version
gcc	9.2.1	eigen3	3.3.7	LHAPDF6	6.2.3	ejpm	0.3.12
CMake	3.17.0	clhep	2.3.2.2	pythia8	8.244	eic-smear	1.0.4f1
python	3.7.5	hepmc	2.6.9	DIRE	2.004	jana	2.0.2
ROOT	6-20-04	hepmc3	3.2.1	Cernlib	2006-12-20	ejana	1.2.2
Geant4	10.6.1	vgm	4.5	lhapdf5	5.9.1-6	g4e	1.3.4
		genfit	2020.1	PYTHIA6	RAD-CORR		
		acts	0.22.00				
		delphes	3.4.2				
		fastjet	3.3.3				

Update the docker

docker pull electronioncollider/escalate

eic.gitlab.io / documents / quickstart /

Escalate at JeffersonLab JupyterHub

jupyterhub.jlab.org

To download all examples:

git clone https://gitlab.com/eic/escalate/workspace

Spawner Options

• Full documentation on JupyterHub

Singularity on farms

- module load singularity
- singularity shell --cleanenv /cvmfs/eic.opensciencegrid.org/singularity/escalate:latest
- source /etc/profile

- Available both for Jlab and BNL farms
- Full ESCalate singularity documentation

Smear tool

• Smearing should be as easy as:

```
smear my_file.txt
```

Select handbook detector and process only 1000 events:

```
smear -d handbook -n 1000 my file.txt
```

Full documentation of the smear tool

Software stack for EIC simulations

G4E – Geant 4 EIC

https://gitlab.com/jlab-eic/g4e

Standalone C++
Multithreaded
Geant4
application

Various EIC MC file formats: Beagle, Pythia6, HEPMC -Pythia8, Herwig and others

Integration with accelerator elements

Infrastructure to import Geant4 detector geometry and simulation code

Grow with user input

Develop

Support

Workflow environment for EICUG

- to use (tools, documentation, support) and
- to grow with user input (direction, documentation, tools)

Involvement from EICUG

Thank you!

The next tutorials will be on Monte Carlo Event Generators. The dates will be slightly adjusted due to the new dates for the EIC User Group Meeting (July 15-17).

eic.github.io

software-support@eicug.org

Mailing list (anyone can contact)

Google forum (for archive of support requests and start of knowledge base)

http://eicug.slack.com/

EICUG Slack workspace with software-support channel

BACKUP SLIDES

Jupyterlab new interface to Jupyter

Scientific Languages

There was one other fast-growing 'language' included in the results that I purposefully left out:

Do we hide complexity?

Jupyter lab, GUI,

Python, scripts, analysis

C++, eJANA, plugins

JANA, eic-smear, ROOT, Geant4

Run on Open Science Grid

Ways to interact G4E with the docker

- 1. JupyterLab (in browser)
- 2. noVNC (in browser)
- 3. Any VNC viewer
- 4. X11 (directly or through ssh)
- 5. Remote debugging

... or just install everything on your machine https://gitlab.com/eic/ejpm

Geant4Eic (g4e)

- Keep close to raw Geant 4 (10.6)
- Small code base and fast compilation is good KISS
- Users coding in "Geant4" paradigms
- Coding is OK GOOD
- Few interfaces are well defined and documented. E.g.
 - How to move in a detector
 - What is the output root file structure
 - etc.

It is up to users what to do, but there are Recommendations to commit code back

Main detectors – sub detectors

Naming convention

Naming sum up

- 1.Central Detector (c):
 - •Barrel (cb) == Central Barrel
 - Solenoid (cb_Solenoid)
 - •Electron endcap (ce) == Central Electron endcap
 - •GEM tracking (ce_GEM)
 - •lon endcap (ci) == Central detector lon endcap
 - •GEM tracking (ci_GEM)
- 2. Forward ion (fi) direction area near D1 magnet:
 - Tracker detector1 (fi_TRKD1)
- 3. FarForward ion (ffi) direction area (near D2, D3 magnets)
 - ZeroDegree Calorimeter (ffi_ZDC)
 - Roman Pots (ffi_RPOTS)
- 4. Far forward electron (ffe) direction area
 - Low*Q2 tagger (ffe_LQ2)
 - Electron Polarimeter (ffe_CPOL)
 - •Luminosity monitor (**ffe_LUMI**)

e^{JANA}

e^{JANA} is JANA + plugins for EIC data reconstruction and analysis

But also:

- tools to manage dependencies and run eJANA in different environments
- Integration with python and extensions to Jupyter Lab

(ejpm, edock, pyjano, and others..)

e^{JANA} stands for EIC JANA

Jupyter lab, Jupyter notebooks, EPW, epic...

Transparency between layers

• JupyterLab -> Python/ROOT C++. Python -> Command line...

Working with ROOT and CLI

- Run docker with bash
 - docker run -it -p 8888:8888 eicdev/epic:latest bash
 - To run jupyter lab environment > jlab

Run ROOT + C++ in notebooks:


```
auto file = TFile::Open("beagle.root");

[2]: auto hst = file->Get<TDirectory>("vmeson")->Get<TH1>("h2_XQ2_true_log");

[3]: auto c = new TCanvas("myCanvasName", "The Canvas Title", 800,600);
    hst->Draw("colz");
    c->Draw();
```

