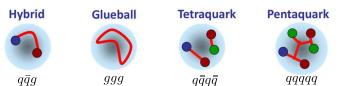
(Heavy flavored) exotic hadrons at LHCb

Biplab Dey

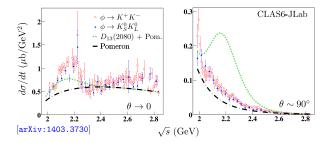


Jefferson Lab User Organization 2020 Annual Meeting

Exotic hadrons at LHCb

EXOTICS IN THE LIGHT QUARK SECTOR?

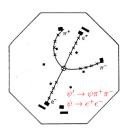
• Exotics: beyond conventional mesons $(q\bar{q})$ and baryons (qqq)


- f₀(500), a₀(980), f₀(980) surmised to be ππ or KK
 tetraquarks or molecules. Difficult to establish.
- S = +1 baryon: manifestly exotic $\Theta(1540)^+ \rightarrow nK^+$
- Historically, very hard to establish in the light quark (u, d, s) sector...

[RPP 2019] of the best known candidate from that period, $\Theta(1540)^+$, the 2006 Particle Data Group listing [7] included a statement: "The conclusion that pentaquarks in general, and that Θ^+ , in particular, do not exist, appears compelling." which well reflected the prevailing mood in the particle physics community until a study of $\Lambda_b^0 \to J/\psi p K^- (J/\psi \to \mu^+\mu^-)$ decays by LHCb [8]

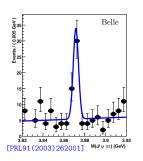
Structure in $\gamma p \rightarrow \phi p$ at CLAS6

B. Dey, JLab-Thesis-2011 Phys.Rev.C89, 055208 arXiv:1403.3730


- The strange quark is not *that* light: $\mathcal{O}(rac{m_{s}}{\Lambda_{
 m OCD}}) \sim 1$
- Detailed data from CLAS6 from near-threshold till $\sqrt{s} \sim 2.8$ GeV.

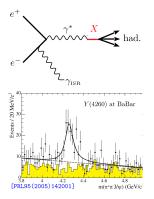
• Data sees $\sqrt{s} \sim 2.1$ GeV "bump" only at forward angles (*t*-channel)

• Re-scattering effects? Resonance at kinematic endpoint? (Lebed '15)


The November Revolution in 1974

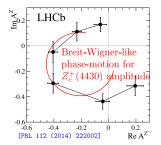
- Heavy charm discovery at SLAC/BNL in Nov'74. Narrow $J/\psi \rightarrow e^+e^-$ peak.
- $m_c \gg \Lambda_{\rm QCD}$ means that $\alpha_s(q^2 = m_c^2) \sim 0.3$, instead of $\mathcal{O}(1)$ for light quarks.
- Charm climbs out of the "QCD brown muck" and allows for simple non-relativistic models
- Cornell potential for heavy quarkonium successfully describes cc̄, bb̄ spectrum, BFs, ...

$$V(r) = -\frac{k\alpha_s}{r} + br$$


Belle 2003 discovery of the X(3872) [Aka $\chi_{c1}(3872)$]

- Belle "accidentally" discovers the X(3872) in $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$. X = unknown.
- $J^{PC} = 1^{++} \begin{bmatrix} \text{from LHCb-2014} \\ PRL112, 222002 (2014) \end{bmatrix}$, mass many 10's of MeV lower than nearest $c\bar{c}$ candidate, $\chi_{c1}(2P)$.
- Very narrow and mass right at $D^0 \overline{D}^{*0}$ threshold.
- Most cited (1785) Belle paper! Seen in many other experiments and production/decay modes, since.
- Detailed lineshape studies recently from LHCb: 2005.13419, 2005.13422
- X(3872) remains first concrete proof of non- $q\bar{q}$ states!

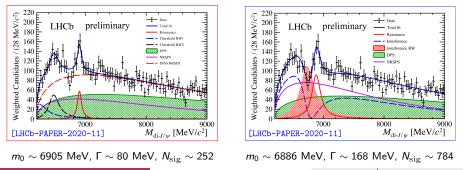
The neutral Y(4260) in 2005 from BABAR


• 2003, same year as $\Theta(1540)^+$ claim from LEPS. Many novel ideas from the *B*-factories to look for exotics.

- ISR technique at Belle/BABAR: an initial photon is radiated so that $\gamma^* \rightarrow$ hadrons allows scanning a continuous spectrum.
- Look for $\gamma^* \to X(3872) \to J/\psi \pi^+ \pi^-$. Would fix the $J^{PC} = 1^{--}$, same as the photon.
- New Y(4260) state, not seen in *B*-decays. non-*cc*̄, hybrid candidate.

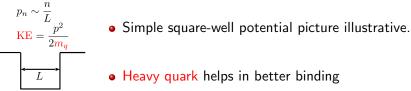
CHARGED HIDDEN CHARM TETRAQUARKS

- Host of $Z_c^+ \to J/\psi \pi^+$ states seen since 2008. Manifestly non- $q\bar{q}$ since valence quark configuration is $|c\bar{c}u\bar{d}\rangle$. No $Z_{cs}^+ \to J/\psi K^+$ seen yet.
- Z_c^+ (4430) most famous, couples to $\psi(2S)\pi^+$, instead of $J/\psi\pi^+$



- LHCb-2014 paper w/ full multi-dimensional fit to $B^0 \rightarrow \psi(2S) \pi^- K^+$
- LHCb sees $Z_c^-(4200)$ and $Z_c^-(4600)$ in the $B^0 \rightarrow J/\psi \pi^- K^+ \text{ mode } \begin{bmatrix} PRL122(2019), 152002 \\ B. Dey et al. \end{bmatrix}$

EVIDENCE FOR $T_{cc\bar{c}\bar{c}}$ (NEW!)


[LHCb-PAPER-2020-011] (in preparation)

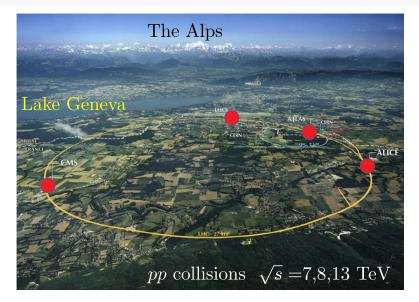
- $T_{QQ\bar{Q}\bar{Q}}$, $Q \in \{c, b\}$, in many QCD models [1803.02522, 1911.00960]
- $T_{bb\bar{b}\bar{b}}$ searched at LHCb [JHEP10(2018),086] and CMS [2002.06393]
- LHCb: prompt di- J/ψ search shows clear evidence of structures. Peak at $\sim 6.9 \text{ GeV}$ with possible $T_{cc\bar{c}\bar{c}}$ interpretation.
- Mass fit models: include interference with NR process or not...

TAKEAWAYS FROM TETRAQUARKS

• Non- $q\bar{q}$ states ubiquitous in charm, compared to light quark systems

Heavy quark helps in better binding

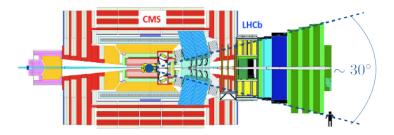
• Production mechanisms clearly vary case-by-case. Those seen in B decays don't always appear in e^+e^- , and vice versa.



Event 251784647 Run 125013 Thu, 09 Aug 2012 05:53:58

Pentaquarks at LHCb

 \bigcirc


THE LHC AT CERN

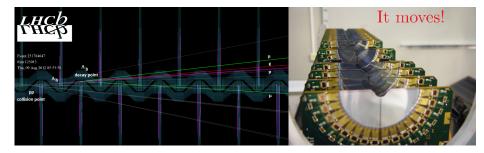
Exotic hadrons at LHCb

LHCB, THE LHC **B**-Factory

- ATLAS/CMS interested in heavy objects (Higgs, TeV-scale new particles), while *b*-particles are relatively light ($m_B \sim 5.29 \text{ GeV}$).
- The *b*-particles from *pp* collisions are highly boosted. LHCb is a forward spectrometer. New Physics in CP-violation and rare *b*-decays

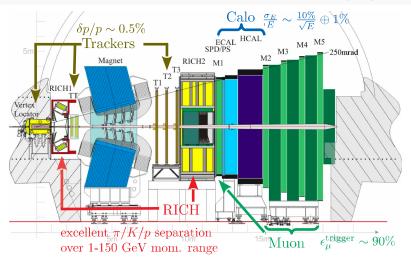
• Compared to e^+e^- colliders (*BABA*R, Belle, BES), huge $b\bar{b}/c\bar{c}$ xsections, but ensuing background. Triggering is critical!

Biplab Dey


Exotic hadrons at LHCb

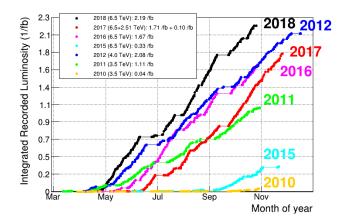
The VeLo

LHCB: PRECISE VERTEXING


JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

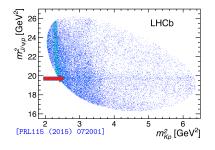
- The weakly-decaying (boosted) *b*-particles fly \sim cm. Locating the displaced *b*-decay vertex separates signal from background.
- Innermost Si vertex detector (VeLo) surrounds the collision point. Inserts in to around 8 mm after stable beam. $\sigma_{\rm IP} \sim 15 \mu m$.

PRIMED FOR FLAVOR PHYSICS


JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

• RICH, VeLo systems unique at the LHC. No RICH for ATLAS/CMS.

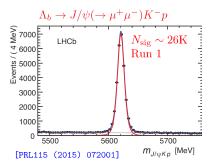
Exotic hadrons at LHCb

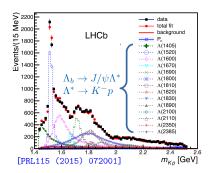

INTEGRATED LUMINOSITIES AT LHCB

• Recorded around 9/fb of data: Run 1 (2011-12) and Run 2 (2015-18)

PENTAQUARKS: A SERENDIPITOUS DISCOVERY

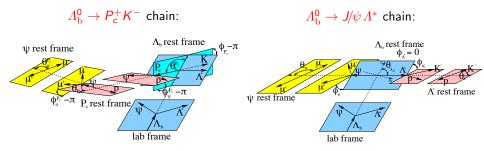
- LHCb was investigating a completely different problem: $\Lambda_{\rm b}^0$ lifetime.
- Heavy quark symmetry: all *b*-hadron species have comparable lifetimes, while Tevatron measurements: $\tau_{\Lambda_{\rm L}^0}/\tau_{\overline{B}} \sim 0.8$
- 2014 LHCb paper [PLB, 734, (2014) 122] resolved the issue ultimately. $\tau_{A_b^0}/\tau_{\overline{B}} = 0.974 \pm 0.006 \pm 0.004$, consistent with HQS.
- Analysis used $\Lambda^0_{
 m b} o J\!/\psi\, K^- p$
- "Band" seen in $m(J/\psi p)$. Reflection?
- Need angular analysis instead of bump-hunting.



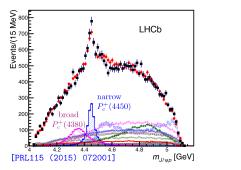

Preliminaries

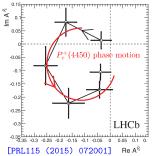
The 2015 Analysis

• Very clean $\Lambda_{\rm b}^{\rm 0}$ signal

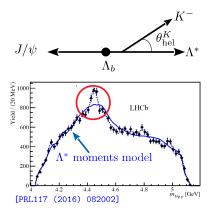

 Problem is the dominant background from conventional Λ^{*} states

ANGULAR ANALYSIS SETUP


• Full 6-dimensional angular analysis in the helicity formalism, allowing a polarised $\Lambda_{\rm b}^{\rm 0}.$

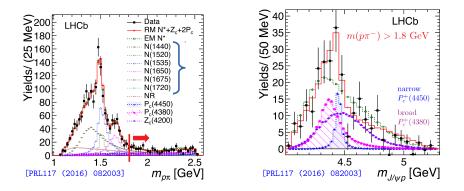


• Special care for final states with spins (μ^{\pm}, p) when multiple chains occur.


STATUS TILL 2015 (SUPERSEDED NOW!)

- Amplitude analysis signal two P_c^+ states with opposite parities. narrow $P_c^+(4450)$ and broad broad $P_c^+(4380)$
- Resonance-like phase-motion for the P_c^+ (4450) amplitude

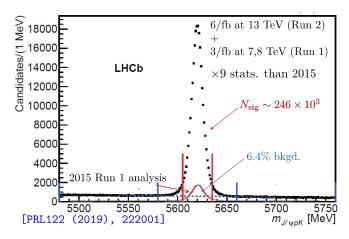
Model-independent validation of exotics



- Dominant and poorly understood Λ^* model a main systematic.
- Λ^* angular moments from data projected on to $m(J/\psi p)$
- Λ^* -only hypothesis rejected at $> 10\sigma$
- Same method used in Z_c^- searches in $B^0 \to \psi^{(\prime)} K^+ \pi^-$

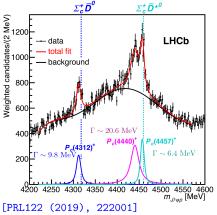
PRL122,152002 (2019), PRD92,112009 (2015)

Cabibbo-suppressed $\Lambda_{\rm b}^0 \to J/\psi \, p\pi^-$ mode


• LHCb also looked at the Cabibbo-suppressed $\Lambda^0_{
m b} o J\!/\psi\,p\pi^-$

• Data consistent with the same P_c^+ presence, especially vetoing the N^* region as $m(p\pi^-) > 1.8$ GeV.

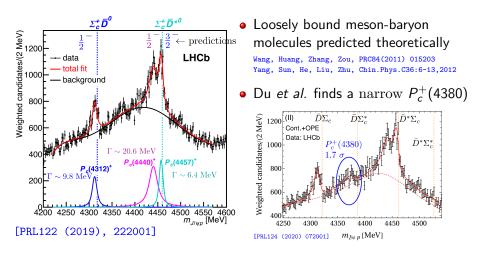
2019 RE-ANALYSIS OF $\Lambda_{\rm b}^0 \rightarrow J/\psi \, \rho K^-$


- Improved selections, additional lumi and higher xsection at 13 TeV
- Allows much finer binning to reveal P_c^+ substructures

NEW PICTURE...

[PRL122(2019),222001]

• To suppress Λ^* , m(pK) > 1.9 MeV or weight by P_c^+ helicity angle.

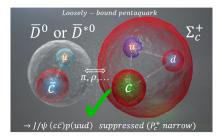


- Three new narrow P_c^+ 's
- New $P_c^+(4312)$ at 7.3 σ
- Old $P_c^+(4450)$ resolves into $P_c^+(4440)$ and $P_c^+(4457)$ at 5.4 σ

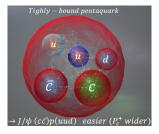
• 1-d fit not sensitive to broad $P_c^+(4380)$

MOLECULAR STATES?

• All three states close to to $\Sigma_c^+ \overline{D}^{0(*)}$ thresholds

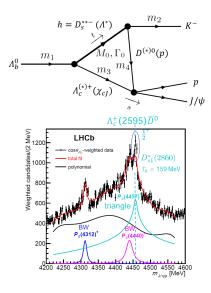


Exotic hadrons at LHCb


[PRL122(2019),222001]

More on the narrow widths...

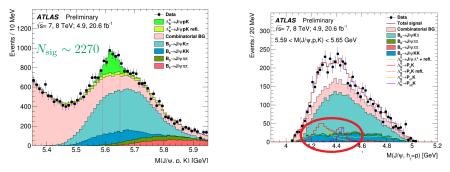
• Decay of the P_c^+ must be suppressed in some manner



• c and \bar{c} are separated

• c and \bar{c} are close by. Easier to form the J/ψ

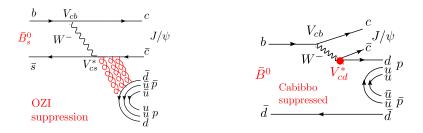
CUSPS AND TRIANGLE SINGULARITIES



- All three legs must be on-shell.
- m_3 and m_4 rescatter to produce cusp at $(m_3 + m_4)$ mass.
- $P_c^+(4457)$ close to $\Lambda_c^+(2595)\overline{D}^0$ threshold.
- Reasonable fit if $D_{s1}^*(2860)^-$ is exchanged in the *t*-channel.

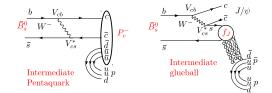
ATLAS RUN I P_c^+ SEARCH

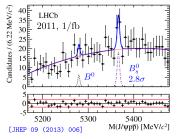
[ATLAS-CONF-2019-048]


- ATLAS has searched in $\Lambda^0_{
 m b} o J/\psi \, pK^-$ as well (Run 1 only)
- Absence of p/K PID separation strongly impediments search

p-values: with (24%) compared to without (0.009%) P⁺_c states, but data can't rule out null hypothesis.

EXOTICS SEARCHES IN $B^0_{(s)} \rightarrow J/\psi \, p\bar{p}$

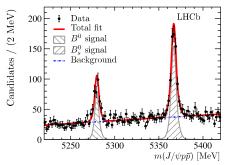

• "Rare" baryonic *B*-decays. Phase-space + Cabibbo/OZI suppressions:



 Interesting "threshold enhancement" seen in many di-baryon B decays. Glueball in pp? Pentaquark from a B-decay? EXOTICS SEARCHES IN $B^0_{(s)} \rightarrow J/\psi \, p\bar{p}$

• pQCD: $\mathcal{B}(B^0) > \mathcal{B}(B^0_s)$ (Hsiao [EPJC75, 101 (2015)])

 Suppression can be lifted by Pentaquark in [J/ψ p] or glueball in [pp̄]



- LHCb has 1/fb upper limits at 90% CL: $\mathcal{B}(B^0) < 5.2 \times 10^{-7}, \ \mathcal{B}(B_s^0) < 4.8 \times 10^{-6}$
- Inverted hierarchy indicated by data, compared to naive expectation

$5 \,\mathrm{FB}^{-1}$ (2011-2016) results

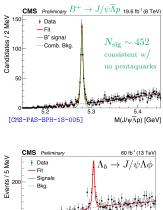
- Powerful new multivariate classifier with proton PID + kinematic variables.
- First observation of these modes. with $\gg 10\sigma$.
- $N_{B_s^0} = 609 \pm 31$, $N_{B^0} = 256 \pm 26$.

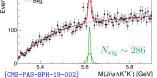
[PRL122, 191804(2019)] B. DEV et al.

$$\begin{split} \mathcal{B}(B^0 \to J\!/\psi\,p\bar{p}) &= (4.51 \pm 0.40 \;(\text{stat}) \pm 0.44 \;(\text{syst})) \times 10^{-7} \\ \mathcal{B}(B^0_s \to J\!/\psi\,p\bar{p}) &= (3.58 \pm 0.19 \;(\text{stat}) \pm 0.33 \;(\text{syst})) \times 10^{-6} \end{split}$$

• Inverted $\mathcal{B}(\mathcal{B}^0) < \mathcal{B}(\mathcal{B}_s^0)$ confirmed in data, as opposed to Hsiao *et al.* theory expectations.

Exotic hadrons at LHCb

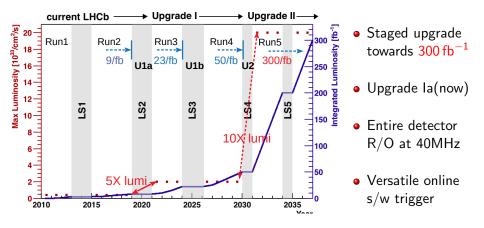

$B^0_{(s)} ightarrow J\!/\psi\, par p$ prospects


- Unlike $\Lambda_{\rm b}^{0} \rightarrow J/\psi \, pK^{-}$, production expected to be mostly phase-space. Pentaquark can dominate.
- Unique topology: pentaquark in both $J/\psi p$ and $J/\psi \bar{p}$ axes with interference in the Dalitz plane.
- Angular analysis on full Run 1+Run 2 ongoing.

Other P_c^+ searches at the LHC

LHCb:

- Update on $\Lambda^{0}_{\rm b}
 ightarrow {\it J}\!/\psi\,{\it p}\pi^-$
- $B^+ \to J/\psi \overline{\Lambda} p$
- $\Lambda^0_{\rm b} \to \Lambda^+_c \overline{D}^{(*)0} K^-$
- Prompt P_c^+ production
- $\Lambda_{\rm b}^{\rm 0} \to \chi_{c1} p \pi^-$
- $\Lambda^0_{\mathrm{b}} \to \Sigma^{(*)++}_{c} D^{(*)-} K^-$


Exotic hadrons at LHCb

LHCb upgrades

LOOKING AHEAD: LHCB UPGRADES

CERN-LHCC-2017-003

• Spectroscopy measurements still statistics limited. Aim to collect $\times 100$ data, improving upon 1-2 fb^{-1}/year.

SUMMARY AND OUTLOOK

• Exotics appear to prefer heavy quark systems. LHCb continue to shape the field with both tetraquark and pentaquark discoveries.

- No reason same P⁺_c's as in b-decays will appear at JLab
- Full angular coverage, as in CLAS6 $\gamma p \rightarrow \phi p$ might be needed

• Can GlueX do
$$\gamma p
ightarrow J/\psi \pi^+(n)$$
?

Looking forward to what JLab finds!