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Introduction

o1 A

e A heavy photon (or dark photon, or A') is a hypothetical vector boson that couples
indirectly to electromagnetic particles

e The Heavy Photon Search (HPS) is a fixed target experiment at Jefferson Lab in Hall
B that is dedicated to searching for this hypothetical vector boson, an A’
e HPS uses two distinct methods to search for A's - a resonance search and a
displaced vertex search
e Presented in this talk:
o Introduction to heavy photon physics and motivations, and experimental overview
o 2016 Engineering Run - first public results for both resonance and the displaced vertex
searches

o 2019 Physics Run - upgrades, commissioning, data taking, and status



Heavy Photon Primer
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This gives rise to a kinetic mixing term (the
SM photon mixes with an A’"). Induces a weak
effective coupling of €e to SM fermions.

A's are motivated by models of “light dark
matter” (MeV-GeV scale) which require a
new, comparably light force carrier.
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2 Parameter Model:
Mass of A'and €

A's circumvent the “Lee-Weinberg Bound”
which requires dark matter mass > 2 GeV
for interactions through weak SM bosons
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Existing Heavy Photon Constraints
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Large coupling searches are generally
“bump hunts” for m(I*1~) resonances
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Existing Heavy Photon Constraints

Large coupling searches are generally
“bump hunts” for m(I*1~) resonances
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HPS Apparatus

e Silicon Vertex Tracker (SVT) measures trajectories
of e+e- and reconstructs mass and vertex position

e Electromagnetic Calorimeter (Ecal) provides e+e-
trigger with precision timing

e Dipole magnet spreads e+e- pairs and provides

curvature for momentum measurement and PID
Electromagnetic
Target ) Calorimeter

l/ (ECal)

Silicon Vertex
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(SVT)
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R R
R R
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Heavy Photon Kinematics and Design Considerations

e A'scan be produced in a process analogous to Bremsstrahlung (dark Bremsstrahlung)
e A's take most of beam energy - decay products are forward with small opening angle

e Detector acceptance must be very forward (very close to beam plane)

Nucleus

typically a few degrees!




Silicon Vertex Tracker
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e Detector (vertical) acceptance down to +/- 15 mrad (which means L1 of SVT is
0.5 mm from beam axis!). Split into two halves: top/bottom

6 layers of silicon microstrips (~0.7% radiation length per layer)
Each layer has 2 sensors - axial/stereo strips for 3D hit position
L1-L3 vertically retractable from beam

L4-L6 are double wide for acceptance purposes

Linear shift motion system used to Hall B Pair Spectrometer
control the gap between SVT volumes vacumm chamber

Built at
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Vacumm feed-throughs for
power, data and control =



2015 & 2016 Engineering Runs

Integrated Current x Livetime (mC) |

Integrated Current x Livetime (mC)

SVT Commissioning @ 1.5 mm
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2015 Engineering Run
50 nA at 1.06 GeV

1.7 days (10 mC) of physics data

2016 Engineering Run
200 nA at 2.3 GeV

5.4 days (92.5 mC) of physics data

180 days of data taking
approved by JLab PAC!




e+e- Backgrounds
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Large number of prompt e+e- pairs observed
What are these e+e- backgrounds?

Vertex resolution + tails are
dominated by multiple coulomb
scattering in tracker
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Trident Backgrounds

Radiative tridents have identical
kinematics to A's; constitute an | "’

irreducible prompt background s

Bethe-Heitler
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Trident Backgrounds

Radiative tridents have identical
kinematics to A's; constitute an | "’

irreducible prompt background s

Bethe-Heitler (BH) tridents
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Converted photons in tracker or target.
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Heavy Photon Signatures in HPS
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Heavy Photon Signatures in HPS
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Displaced Vertex Search Event Selection

e In addition to bump hunt analysis, the displaced vertex analysis requires extra

cleanup to reduce backgrounds at large z.
o Two main backgrounds - large scatters in layer 1 of the tracker and mis-tracking
o Require stricter selections on track quality and vertex quality & require layer 1 hits
o Displaced vertex search is also blinded with the selection tuned on 10% of the data
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Displaced Vertex Search Signal Region

o1 A

dN/dz [1/mm]

LS /™7 g \ 3

e Start with a single mass slice and fit
the background spectrum
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Displaced Vertex Search Signal Region

dN/dz [1/mm]
5 3 3 3

-
o
S

10

107"

Reconstructed Z for 105 MeV +4.7 MWSS Slice

We require layer 1 hits.
Relaxing this restriction
is discussed later.

/'
| o

L1

- 9 Data
E @‘j@ ™ Entries 1479876
%@ Mean -4.661
- RMS 1.957
= X2/ ndf 587.4/18
B Amplitude  3.264e+05 + 3.911e+02
E Mean ~4.668 + 0.002
o Sigma 1.758 £ 0.002
= Tail Z 1.583 + 0.006
B —— Data
- —— 105 MeV A'
= - - - Gaussian Core Fit
= —— Exponential Tail Fit Fry
;_ — 2, @ 1/2 Background _ 1 _g,
= E o
: :
] i 11078
Signal Region - =
30 20 30 40 50 60 0

Reconstructed z (mm)

Signal falls off rapidly
due to geometrical
acceptance

L2

13

18



Displaced Vertex Search Signal Region

dN/dz [1/mm]
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Displaced Vertex Search Signal Region

dN/dz [1/mm]
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Displaced Vertex Search Final Results _ _
arXiv:physics/0203002v2
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_integrated past zcut. developed for DM direct detection
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ExpeCted A' Rate L1 L1 Data 100‘%’ T Minimum Limit is 6.05 x A' Cross Section 104
0.5 . HPS Preliminary at Mass 80.2 MeV and & = 2.12e-09
Maximum Detectable is 0.42 events . i
W at Mass 76.5 MeV and &2 = 2.39-09 0.45 % =
[opg==—=—"" "3 3
0@ b 10
10.35
(3]
(¥5)
10°
0.25 \
10° 10°
0.15
10
10 - . 7 rr n-=s
%0 70 8 9 100 110 120 130 140 150 ° e ”;gﬁ“ﬁﬁ'gﬁfﬁ*ﬂzo”" .
m(e+e-) (MeV) m(e+e-) (MeV)

Proof of principle, though not enough luminosity for A’ sensitivity, we have much more data with upgrades?’



Discussion of Excess Displaced Vertices at Low Mass

These events are under investigation

e Possible backgrounds - Beam-gas
interaction (< 0.1 events) and
Mis-tracking + hit inefficiency (likely)

e Possible signal (unlikely, see below)
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Future of the 2016 Vertexing Analysis

e So far we required layer 1 hits, but A's can live
long enough such that the e+ and/or e- daughter

can miss layer 1
o This introduces more complicated backgrounds -
hit inefficiencies, scattering in the inactive sensor,
conversions, etc. A quantitative study of these
backgrounds is ongoing.

® Possibly sensitive to Strongly Interacting Massive

Particles (SIMPs) in 2016 data
o  HPS can probe long-lived dark vectors (V) in a
similar method to searching for A's
o Mechanism contains missing energy due to dark
pions - search in lower e+e- momentum sum
region than A’s

e+

The SIMP Miracle
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n n \/

(heat dumped into SM)
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T SM SM
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arXiv:1402.5143
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HPS Upgrades

o1 A

e Analysis from 2015/2016 motivated
simple upgrades

e Add a tracking layer (Layer 0) between
target and current first layer

o Dramatically improves vertex resolution,

hence the vertex reach
e Move L2-L3 slightly towards beam

o Improves acceptance for longer-lived A’s

o Also replaced L1 with new thin sensor
and moved closer to the beam

acceptance

o & o

o o

o o

F=r
VZ Resolution

T
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= 6 :_ —»— 1.05 GeV nominall
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o - —o—2.3GeV LO
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HPS Upgrades

e Analysis from 2015/2016 motivated
simple upgrades
e Add a tracking layer (Layer 0) between
target and current first layer RTY— Pe—

et 1
hence the vertex reach = : HT - T
. @ Beam Electrons
e Move L2-L3 slightly towards beam 3 2388 Y

)-
v

o Dramatically improves vertex resolution, r

T

o Improves acceptance for longer-lived A’s

o Also replaced L1 with new thin sensor -

and moved closer to the beam Positron Only

e Add hodoscope inside vacuum chamber Trigger
o  Positron only trigger reduces acceptance

losses in the “Ecal hole”

i T

B el St e—



Installing HPS Upgrades

HPS upgrades
successfully installed
in May-June 2019 in

time for June start

L1-3 design

Beam line

320 ym 200um  geqle Br T
drawing M €
LO design

1.5 mm 1.5mm
1.25 mm

0.5mm

SVT Fully “Closed”
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HPS Projected Reach With Upgrades

HPS_SC

4.55 GeV beam:
Achieved excellent
beam at the target.

Number of events
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Reach projection contour scaled to
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Conclusion

o1 A
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e Heavy photons are well-motivated as the particle that mediates light dark
matter interactions with SM matter

e HPS has successfully completed two engineering runs at two different beam
energies (1.06 GeV in 2015 and 2.3 GeV in 2016)

e Resonance search - results from 2015 are published and result from 2016 are
now public. Both exclusions are consistent with several other experiments.

e Displaced vertex search - demonstrated proof of principle for the displaced
vertex search. Analysis for A's with longer livetimes and SIMPs are ongoing.

e HPS successfully completed its first physics run for 2 weeks at 4.55 GeV with
tracker and trigger upgrades. This data has real physics potential.

® Possibility for more running in 2021 and beyond

28



Thanks! Questions?

HPS Collaboration

May 3 - 5, 2017
Jefferson Lab * Newport News, VA
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2015 Resonance Search Results (1.06 GeV)
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PhysRevD.98.091101
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Mainz

10
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APEX
Test Run

e No significant bumps found, excluded parameter
space consistent with other experiments’ exclusions
e Expected signal rates derived from data and the

Systematic Description Value

radiative fraction

BaBar . . .
Radiative Fraction

o do(e=Z — e  Z(A — 1117)) 3me? ma

ete~ Composition 7%

do(e=Z — e~ Z(v* — IHl7)) a 2Nepra Om

Mass Resolution

® [Mass scale and mass resolution  Fit to Mgller mass spectrum ~ 2.6%
Target position 1.5%

determined by Moller scattered =

e-e- pairS Fit systematic <= 39 MeV ~ 15%
Fit systematic > 39 MeV 1.4%

Ecu = \/zmeEbeam (32.9 MeV at 1.06 GeV beam)

e Resonance search is the foundation for the displaced
vertex search 30



Displaced Vertex Analysis 2015 Results
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Discussion of Excess Displaced Vertices at Low Mass
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Mistraking + Hit Inefficiencies

e Many of the high z events could be due to mistracks + hit efficiency effects
e The n-1isolation cut plot (left) is a decent measure of mistracking.

o  One expects some fraction of these events to appear because of hit efficiency
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Preliminary SIMP Reach 2016 Engineering Run

o1 A

® Possibly sensitive to Strongly Interacting
Massive Particles (SIMPs) in 2016 data

e Motivated by the “SIMP Miracle” (DM in
~1-10 GeV range)

e HPS can probe long-lived dark vectors (V) in
a similar method to searching for A's

e SIMP model decouples A’ cross-section and
V livetimes. High rate of long-lived particles!

® Much of this analysis can be done in parallel
with the minimal A’ search [}~

e Stay with 1 slide
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Light Dark Matter

“Lee-Weinberg Bound”
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Lighter dark matter requires a new,
comparably light force carrier.
A simple/natural candidate:
heavy/dark photon
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Displaced Vertex Search Final Results

Optimum Interval Method (OIM) is ideally used for small signal where signal shapes
are known, but background is not sufficiently known (e.g. direct DM detection)

arXiv:physics/0203002v2

Maximum Gap
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Minimum Limit is 6.05 x A' Cross Section
@B@ at Mass 80.2 MeV and &2 = 2.12e-09
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Proof of principle, though not enough luminosity for A’ sensitivity, we have much more data with upgrades! .,



Electromagnetic Calorimeter and Trigger

o1 A

=

Ecal made out of 442 lead tungstate (PbWO4)
crystals and built by JLab/Orsay/INFN
>100 kHz max trigger rate with 8 ns trigger window

Background is dominated by electrons scattering in

the target. Trigger eliminates 10’s MHz of these

Split in 2 halves: top/bottom to avoid “wall of flame”
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Scattered Beam Background
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Trigger selects on opposite

top/bottom clusters:
Cluster Time Difference
Cluster Energy

Cluster Energy Sum
Cluster Energy Difference
Cluster Coplanarity
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Converted Wide Angle Bremsstrahlung (WABSs)

A
D e 7 V>
Converted photons in tracker/target
are common, but pairs in the same - g
S ————— A
hemisphere i Waber e e WAB
. %, 1n top E . 3, - tri-trig + WAB
O ReCOIIS are generally Soft’ but Can ...................................... . .:‘.
trigger with a conversion positron in \/ Ll ‘..
opposite hemisphere: rate WAB e 3 1ol ! :.i.
comparable to tridents /\ v F L[] *
o
o  Daughter particles and recoil n s i f
electron point back to the primary - My | I T t ‘ ‘
Simple cuts eliminate about 80% 3 ' H ‘ ’
uuuu I TR ' A A A P A A
with minimal signal loss 0 00 oo ot Joey M ot o
o Require a layer 1 positron hit rad et e~ pairs
rad frac =

total eTe pairs
38



