Analysis of $\pi^0\eta$ and $\pi^0\eta'$ systems in $\gamma p \rightarrow \pi^0\eta' p$ at GlueX

Zachary Baldwin
Carnegie Mellon University Physics Department

Abstract

In order to search for the existence of exotic hybrid mesons, the GlueX experiment, at Jefferson Lab, utilizes a linearly polarized photon beam at $E_\gamma = 8 - 9$ GeV to map the spectrum of light mesons. A particular interest has been placed on the $\pi^0\eta'$ and $\pi^0\eta$ systems, as an observation of odd angular momentum L waves in this final state may indicate the presence of exotic quantum numbers. By comparing both systems, the role of flavor symmetry should be highlighted as to allow for a better understanding of meson production mechanisms. We present preliminary results from initial studies of these channels from more than four petabytes of data recorded by the GlueX experiment, and compare the results to previous experimental observations of the same channels.

GlueX

The GlueX experiment utilizes a linearly polarized photon beam constructed through a coherent Bremsstrahlung radiation. The photons are tagged by the scattered electrons coming off of a diamond wafer. Once tagged, the photons will then proceed to collide with a liquid hydrogen target located inside of the detector. The barrel calorimeter is largely accountable for the detection and identification with a large acceptance to neutral and charged particles.

Motivation

In meson spectroscopy, quantum numbers are determined through the values associated with $f, I, O, S, P = (-1)^{I+1}, C = (-1)^{I+S}$. Certain I^G values are forbidden in the constituent quark model which would give rise to the implications of non-$\eta\eta'$ structures. Possible quantum numbers for a $\pi^0\eta$ system include:

$$P = M = (-1)^{I+1}$$

Here the possible exotic configurations are located in the P and F-waves in which past experiments have made the claim that the P-wave, the exotic hybrid candidate is either the $\pi_1(1400)$ or $\pi_1(1600)$.

Event Selection > 60% of GlueX Phase 1 data

The data shows an η_1 near threshold, this is similar in comparison to Compass results.

The data shows both an η_1 as well as an η_2. Unlike Compass, which utilizes pion production, GlueX utilizes photo-production which explains why an η_2 is produced.

Angular Distributions

- Large contribution of forward going η at $\cos \theta_{\eta} = 1$
- Greater asymmetry in resonance region than compared to $\mu^+\mu^-$
- This forwardbackward asymmetry is due to the interference between even and odd waves

The Gottfried Jackson frame (GJ) is a reference frame where x is the direction of the photon in the reference frame of $X = \eta'\overrightarrow{P}$.

VanHove Distributions

In a VanHove analysis, the longitudinal components of the final state particles are in the center of mass reference frame such that $\sum q_i = 0$.

Outlook

With the data analyzed thus far, important structures can already seen and with 40$^\text{th}$ more data to be analyzed, statistics will only improve. Improving the purity of both channels and beginning the process of a partial wave analysis will be the following steps to observe the possible exotic hybrid candidate.