Beam Spin Asymmetry Measurements from Exclusive Vector ϕ Meson Electroproduction with CLAS12

Motivation

The mechanism of confinement – the phenomenon resulting in no unbound quarks existing in nature – has been an ongoing research endeavor since the inception of QCD. Candidate mechanisms include:

- Formation of a gluon flux tube between quarks
- The QCD vacuum screens against the propagation of free quarks.

Understanding the mechanism of confinement is possible at JLAB 12-GeV kinematics with the tools of:

- Generalized Parton Distribution functions (GPDs)
- Deeply Virtual Meson Production (DVMP)

GPDs are part of the “3D nucleon imaging” program of JLAB to map the:

- 2D spatial × 1D longitudinal momentum distribution of quarks and gluons (this work)
- Sensitivity to GPDs E, H, and F_{11}.

Accessing gluons of the nucleon is best done using $\phi(1020)$ or $1/(W^2)$ production.

Experiments in this field ideal for ϕ.

Finding a Needle in a Haystack

Vector ϕ meson is detected via $ep \rightarrow e\phi p \rightarrow e\phi pK^0$ in the Forward Detector.

Sort through the data to first select electrons to define an event…

...and the pK^0 in the forward detector. Select through the data to first select electrons to define an event…

Exhausting data to first select electrons to define an event…

Exclusive Vector ϕ Meson Beam Spin Asymmetry Measurements

Method 1 – Asymmetry with Sideband

- Subtracting the difference in beam spin asymmetry between signal and background

Method 2 – Individual Fits Per Bin of ϕ_{LAB} for Each Helicity

- Two independent methods:
 1. Extract beam BSA by removing background asymmetry using "sideband subtraction".
 2. Calculate signal events for each ϕ_{LAB} bin using fit to $K^0^+K^0^-$ mass for each helicity state.

Both methods yield comparable asymmetry measurements.

Kinematic Coverage

CLAS12 produced data over a wide range of electron and hadron momentum and angles for superb coverage in Q^2, $x_F \rightarrow 0$.

Multidimensional binning provides insight into how our measurements change at different energy scales.

References and Support

1. I. Sh云南

This work was supported by the US DOE, Office of Nuclear Physics, under contract no. DE-FG-04ER41309

CLAS12 Detector

Continuous Electron Beam Accelerator Facility Large Angle Spectrometer at 12 GeV (CLAS12):

- 10.8 GeV polarized electron beam on a liquid H$_2$ target.
- Symmetric magnetic field for 8 independent sectors.
- Large displaced charged and neutral particles.
- Momentum Reconstruction $<1%$.
- Timing Resolution -60 to 160 ps

Electroproduction and Beam Spin Asymmetry Measurements from Exclusive Vector ϕ Meson Electroproduction with CLAS12