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Abstract

When using deep inelastic scattering (DIS) to probe hadronic structure, we can use the operator
product expansion to approximate the product of currents, using the operators’ twist to suppress
higher order effects. On the lattice, these operators experience power divergent mixing, which
we aim to control by introducing the gradient flow. We study an example in perturbation theory.

Quantum Chromodynamics

Quantum Chromodynamics or QCD the the quantum field theory of the strong force. Some key
feature of QCD are

describes the interactions of quarks and gluons
SU(3) color symmetry group
confinement: at low energy the coupling is large, quarks are constrained to hardons, and
perturbation theory is invalid
asymptotic freedom: at high energy the coupling is small, quarks can be treated as free
particles, and perturbation theory can be used

Twist-2 Operators

Deep Inelastic Scattering or DIS is used to probe the
structure of hadrons.
A high energy lepton scatters off of a quark within the
hadron.
Calculations require finding a matrix element of the
product of quark currents.
This is done through the Operator Product Expansion
or OPE, is controlled by the twist of the operators.
The twist t of an operator of mass dimension d and
spin s has a twist t = d− s.
This project deals with twist‐2 operators.

Figure 1. A diagram showing the process
of deep inelastic scattering where a
lepton l scattters off of a quark q inside
of a hardon h. [1]

The Lattice Regulator

QCD is non‐perturbative at low energies and many quantities that we might which to
theoretically calculate cannot be carried out analytically
Do calculations numerically using a lattice regulator.
Transform the theory onto a Euclidean lattice, with the quarks sitting on the lattice cites and
the gluons on the links between them.
The lattice also serves as a regulator for the divergences of the theory, parameterized by the
lattice spacing a.
The lattice breaks rotational symmetry,leading to the twist‐2 operators to have
power‐divergent mixing under renormalization.

The Gradient Flow

In order to use the twist‐2 operators with the lattice regulator, we can restore an approximate
rotational symmetry by smearing the quark and gluon fields in physical space, rather than lattice
space, by the flow time τ . From [3], we replace the quark fields ψ, ψ̄ and the gluon field Aµ to
with the smeared fields χ, χ̄ and Bµ, such that the smeared fields match the unsmeared fields at
flow time τ = 0 and satisfy

∂τχ = DµDµχ ∂τ χ̄ = χ̄
←−
Dµ
←−
Dµ (1)

∂τBµ = Dν(∂νBµ − ∂µBν + [Bν, Bµ]) (2)

Solving these differential equations leads to different Feynman rules from the usual QCD ones.
In the Feynman gauge, the quark and gluon propagators pick up Gaussian factors in their mo‐
mentum, parameterized by the flow time. The QCD interactions are only changed by replacing
the original fields with the flowed fields and all occur at flow time τ = 0. In addition, there are
two kernels, one for the quarks and one for the gluon, and four flowed interaction vertices that
couple propagators and kernels.

The Hyperoctahedral Group

For this project, we need two twist‐2 operators that exhibit power‐divergent mixing so that we
can test if applying the gradient flow controls the mixing. To find two such operators, we examine
the symmetry group of the Euclidean lattice, the hyperoctahedral group of order 4 orH(4). There
are 20 irreducible representations of H(4), as described in [2]. Operators of definite twist can be
constructed to transform under one of these irreducible representations. In this way, operators in
different irreducible representations do not exhibit power‐divergent mixing under renormalization;
however, we wish to use two operators that do exhibit power‐divergent mixing. We take an
example of two operators in the same irreducible representation of H(4) and check that they
have the desired mixing before applying our prescription. We chose the simplest two such twist‐
2 operators which fall in the τ (4)

1 representation, following the convention of [2], with charge
conjugation C = −1: the rank‐1 operator

Oµ = ψ̄γµψ (3)

and the rank‐3 operator

P{µνν} = 1√
2

4∑
ν=1

ψ̄γ{µ
↔
Dν
↔
Dν}ψ = 1√

2

4∑
ν=1

(
ψ̄γµ

↔
Dν
↔
Dνψ + ψ̄γν

↔
Dµ
↔
Dνψ + ψ̄γν

↔
Dν
↔
Dµψ

)
. (4)

Continuumwithout the Gradient Flow

For our example operators, we begin by checking their behavior in the continuum without the
gradient flow. If there will be power‐divergent mixing, there must be a term in one of the 1‐loop
diagrams that is proportional to the tree‐level of the other diagram. In this case, we find that the
1‐loop diagram of P{µνν} is proportional to the tree level diagram of Oµ. The tree‐level diagrams
for each operator are

Oµ

p p = Γ(tree)O = γµ and p p

P (1)
{µνν}

= Γ(tree)P = −2
√

2(γµp2 + 2/ppµ). (5)

At 1‐loop,Oµwill have one diagram and P{µνν}will have three, a vertex diagram and a sail diagram
and its mirror (plus a tadpole diagram which vanishes). Evaluating these, we find

Oµ

p

k

p

k

p − k

= ΓµO,1 = ig2CF
(4π)2

γµ

[
1
ϵ
− γE − 1 + log(4π)− log

(
p2

µ2

)]
, (6)

P{µνν}

p

k

p

k

p − k

= ΓµP ,1,1 = −2i
√

2g2CF
(4π)2

(γµp2 + 2/ppµ), (7)

and

P{µνν}

p

p

p − k

k = ΓµP ,1,3 =
√

2g2CF
[

(2D+4)γµ
D

∫ 1
0 dx

(
J

(2)
2 + x2J (0)

2

)
+
(
(4− 2D)/ppµ + 4p2γµ

) ∫∫ 1
0 dx xJ

(0)
2

]
.

(8)

From these diagrams, we can see that both ΓµP ,1,1 and ΓµP ,1,3 contain terms proportional to Γ(tree)
O =

γµ. So Oµ and P{µνν} will power‐divergently mix in the continuum without the gradient flow,
which is what we were hoping to find for our example.

Continuumwith the Gradient Flow

Next, we repeat the calculation of the fermion bilinears of our example operators in the continuum
with the gradient flow. The tree level diagrams pick up Gaussian factors from the flowed quark
propagators so

ΓtreeO = γµe
−2τp2

and Γ(tree)P = −2
√

2(γµp2 + 2/ppµ)e−2τp2
, (9)

where τ is the flow time of the operator’s vertex.

At 1‐loop order with the gradient flow, there are now three diagrams for the Oµ operator and
five for the P{µνν} operator (plus a tadpole diagram which vanishes).

(a) ΓµOA (b) ΓµOB (c) ΓµOC

(d) ΓµPA (e) ΓµPB (f) ΓµPC

(g) ΓµPD (h) ΓµPE (i) ΓµPF

Figure 2. The leading order corrections to Oµ and Pµ.

Importantly, we can see that the one of the P{µνν} diagrams contains a term proportional to the
tree level diagram of Oµ:

ΓµPA = 2
√

2g2CF [a(p2γµ + 2pµ/p) + b/pγ
µ] (10)

where

a =m2p2K2,4(2t) +
(

(D − 2)(D + 1)
D

p2 +m2
)
, K2,2(2t)−

(D − 2)2

D
K2,0(2t) (11)

b =2imp2(4−D)
D

K2,2(2t), and Kn,l(x) =
∫
k

e−xk
2

(k2 +m2)nkl
. (12)

Conclusion

So far, we have demonstrated that our example operators will exhibit power‐divergent mixing
under renormalization in both the continuumwith andwithout the gradient flow. This is promising
because we want to find that they will also have this kind of mixing on the lattice without the
gradient flow. Demonstrating this is the next step in this project. After that, all that remains is
to repeat the calculation once more on the lattice but with the gradient flow. If our hypothesis
is correct, we will see that the operators no longer exhibit power‐divergent mixing in this case,
due to the pseudo‐restoration of the rotational symmetry to the lattice from the smearing of the
fields by the gradient flow.
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