

Jefferson Lab

DESIGN, COMMISSIONING AND PRELIMINARY RESULTS OF A MAGNETIC FIELD SCANNING SYSTEM FOR SUPERCONDUCTING **RADIOFREQUENCY CAVITIES***

I. Parajuli¹[#], J. Nice¹, G. Ciovati^{1,2}, W. Clemens², J. R. Delayen^{1,2} and A. Gurevich¹ ¹Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, USA ²Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

INTRODUCTION	EXPERIMENTAL PROCEDURE	
 Niobium Superconducting radiofrequency (SRF) cavities are essential building blocks of modern particle accelerators. They operate at cryogenic temperatures (2-4 K) to achieve superiorly high-quality factors (10¹⁰ – 10¹¹). Residual RF losses at high fields prevent achieving optimum quality factors at a 	 Assemble the MFSS on a 1.3 GHz SRF cavity with typical surface treatments. Insert the assembled setup in a liquid helium Dewar. 	Applied magnetic field direction. Cavity 13°

- higher accelerating gradient in SRF cavities. The magnetic flux trapping is a leading cause of residual loss that depends on cool-down conditions, surface preparation, and the ambient magnetic field [1 - 4]. Suitable diagnostic tools are in high demand to study the effects of such conditions on magnetic flux trappinNi;g to enhance cavity performance.
- A new magnetic field scanning system (MFSS) is developed to measure the local magnetic field trapped in SRF cavities at 4 K. The design of the newly commissioned system and preliminary results of the measurements of the magnitude and distribution of trapped flux at different cool-down conditions using Hall probes (HPs) and Fluxgate magnetometers (FGMs) in a 1.3 GHz single-cell SRF cavity are presented.
- Perform magnetic field scanning at different cool-down conditions and external magnetic fields.
- Experiment was performed in two mode: Monitor mode and Scan mode.

OBJECTIVES OF THE EXPERIMENT

- □ Trapped vortex dissipates power under high RF field test, which increases the cryogenic cost.
- We want to investigate the trapped flux mechanism using newly design MFSS. So that we can help to increase the efficiency of SRF cavities.

PRELIMINARY RESULTS

The cavity was subjected to "fast-cooldowns" through the critical temperature at an external magnetic field of ~ 200 mG. Both HPs or FGMs used in MFSS detected the superconducting transition

Fluxgate Reading vs Time •••• Superconducting State •••••••••••• ****************** 10:23:20

Characteristics of an isolated vortex line: (top) radial distributions of the magnetic field and order parameter amplitude; (bottom) visualized vortex line (red) with circulating currents, screening the magnetic flux.

EXPERIMENTAL DESIGN SRF cavity Limit switch Design of MFSS with cavity (a) and schematic of probe holder with a probe (b) MFSS assembled on 1.3 GHz SRF cavity

- MFSS consists of two brackets
- Each bracket can hold up to eight sensors
- The motor can rotate MFSS from 0-360 degrees around the axis of the cavity. Detail of the experimental design of magnetic field scanning system can be found on [5].

TYPES OF SENSORS

Eluxaate Magnetometer (EGM)

Hall Probe (HP)

Working principle: Hall Effect

Bracket 2 with four FGMs

Bracket 1 with four HPs

luminum rod; one end

nnected to motor

1.3 GHz Tesla shape SRF cavity

nnected to gear, and other

FGMs reading vs Time during fast cool-down

- **Before performing a first** magnetic field scan: we applied an external magnetic field of $\sim 200 \text{ mG}$ and cool the cavity to 12 K.
- We performed the magnetic field scanning test.
- These are plots of HPs reading and FGMs reading during magnetic field scan around the cavity axis.

...........

- Before performing a second magnetic field scan:
- □ We did slow cool-down with
- $B_{ext} \sim 200 \ mG$ and $\Delta T \sim 200 \ mK$.
- □ The cavity temperature was kept at 4.4 K immersing in liquid He.
- \Box We decreased the $B_{ext} \sim 2 \text{ mG}$.
- □ The values shown in plots are trapped flux on the cavity surface.

- Working principle: Magnetic and electric induction.
- Single axis magnetometer useful in cryogenic temperature.
- Cylindrical shape with diameter 1mm and 28 mm long.
- Measure field as low as 0.1 nT up to 0.2 mT.

SUMMARY AND FUTURE WORK

- > A New system for measuring magnetic flux trapped in the walls of 1.3 GHz SRF cavities has been designed, built and tested at cryogenic temperature.
- > The system can detect the superconducting transition. Magnetic field scanning of a cavity surface was successfully carried out to measured the distribution of trapped magnetic fields around the cavity wall.
- > Currently, we have used only four sensors in each bracket. In the future, we are planning to install 8 sensors in each bracket.
- > We plan to perform a magnetic field scan during a high power RF testing of cavities prepared with different surface treatments at different cool-down and different external magnetic fields.

Acknowledgments: * Work supported by NSF Grant 100614-010. G. C. is supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. # ipara001@odu.edu	 [1] C. Vallet, M. Bolore, B. Bonin, J.P. Charrier, B. Daillant, J. Gratadour, F. Koechlin, and H. Safa. Flux Trapping in Superconducting Cavities. In Proceeding of the European Particle Accelerator Conference EPAC92, page 1295, 1992. [2] H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators (Wiley & Sons, New York, 1998 [3] A. Romanenko, A. Grassellino, O. Melnychuk, and D.A. Sergatskov. J. Appl. Phys. 115, 184903 (2014). [4] Pashupati Dhakal and Gianluigi Ciovati. Supercond. Sci. Technol. 31 (2018) 015006. [5] Parajuli, I., Nice, J., Ciovati, G., Delayen, J., Gurevich, A., & Clemens, W. DESIGN AND COMMISSIONING OF MAGNETIC FIELD SCANNING SYSTEM FOR SRF CAVITIES, in Proc. 19th Int. Conf. on RF Superconductivity (SRF'19), Dresden, Germany, Jul. 2019. doi:10.18429/JACoW-SRF2019-TUP052.
---	--