Exploring the Spin Structure of Neutron using Deep Inelastic Scattering

Murchhana Roy (for the A_1^\perp / d_2^\perp Collaboration)
University of Kentucky

NUCLEON SPIN STRUCTURE

1964 Quark Model proposed by Murray Gellman and George Zweig
1968 Experiment in SLAC; evidence that proton consists of point-like objects called Partons
1987 EMC experiment at CERN; only a fraction of nucleon spin comes from quark spin

"PROTON SPIN CRISIS"

Current Understanding:
$S_N = S_2^2 + L_1^2 + L_2^2 = \frac{1}{2}$

How do Quarks and Gluons contribute to overall spin of a nucleon?

DEEP INELASTIC SCATTERING

Unpolarized Cross Section:
$\frac{d^2\sigma}{dE'dE} = \frac{1}{4\pi^2} \left(\frac{Q^2}{M^2} \right) \left(\frac{E'E}{E-E'} \right)^2 \left(1 + \frac{Q^2}{M^2} \right)^2 \frac{dW}{d\Omega}$

Polarized Cross Section:
$\frac{d^2\sigma}{dE'dE} = \frac{1}{4\pi^2} \left(\frac{Q^2}{M^2} \right) \left(\frac{E'E}{E-E'} \right)^2 \left(1 + \frac{Q^2}{M^2} \right)^2 \left(1 - 2\gamma \cos^2 \theta \right) \frac{dW}{d\Omega}$

• g_2: is among the cleanest higher twist observables – contributes in leading order (twist-2) to the transverse spin asymmetry.
• $g_2(x,Q^2) = g_2^{\text{Born}}(x,Q^2) + g_2^{\perp}(x,Q^2)$

NEUTRON g_2 AND d_2

g_2^\perp (Wandzura & Wilczek)
$g_2^{\perp}(x,Q^2) = \frac{1}{x} \frac{d^2\sigma}{dE'dE} \bigg|_{\gamma=0}$

Twist-2 (Cortes, Pire & Ralston)

$g_2^{\perp}(x,Q^2) = \frac{1}{x} \frac{d^2\sigma}{dE'dE} \bigg|_{\gamma=0}$

Quark-gluon correlation

$\frac{d^2\sigma}{dE'dE} = \frac{1}{4\pi^2} \left(\frac{Q^2}{M^2} \right) \left(\frac{E'E}{E-E'} \right)^2 \left(1 + \frac{Q^2}{M^2} \right)^2 \left(1 - 2\gamma \cos^2 \theta \right) \frac{dW}{d\Omega}$

$\gamma = E'E - E-E' = \text{energy transfer}$

$\theta = \text{scattering angle}$

$\gamma = \text{Fraction of nucleon momentum carried by the struck quark}$

g_2^\parallel: is the third moment of the linear combination of the spin structure functions, clean probe of quark-gluon correlations or higher twist effects.

$g_2^\parallel(x,Q^2) = 3 \int_0^1 x^2 [g_2(x,Q^2) + 3g_2(x,Q^2)] dx + \frac{1}{x} \frac{d^2\sigma}{dE'dE}$

It represents average color Lorentz force on the struck quark due to the remnant di-quark system and it is cleanly computable using Lattice QCD

"Color Polarizability"

THE EXPERIMENT (E12-06-121)

Objective:
Measurement of neutron g_2 and d_2 over a wide range of x and Q^2 in Jefferson Lab Hall C.

Existing Results and Projections:

- Projected d_2^\perp at three nearly constant $Q^2 = 3.0, 4.3, 5.6$ (GeV/c)2.
- Benchmark Lattice QCD in high Q^2 region.
- Direct overlap with 6 GeV Hall A measurements (dips below elastic).
- Hint of a negative d_2^\perp at moderate $Q^2 \sim3$ (GeV/c)2 was noted in E06-014 at Jefferson Lab.

DATA ANALYSIS

Analysis Goal:

- Extract unpolarized cross section (σ_u) and electron asymmetries (A_{λ}) to determine g_2 and d_2.
- $A_{\perp} = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}}$ on the struck quark.
- Access g_2 and d_2 from the polarized cross section difference.

Polarization Direction Measurements:

- If the target polarization direction deviates slightly from $90^\circ/270^\circ$, the longitudinal asymmetry (A_{\parallel}) contributes to the total asymmetry in same order as the transverse asymmetry (A_{\perp}).
- Measure absolute direction of the target magnetic field in the Hall C coordinate system precisely within $\pm 1^\circ$.

Online 3He Elastic Asymmetries:

1-pass 3He elastic data was taken to check P_P, P_\perp and other systematics.

$A_{\text{physics}} = \frac{A_{\text{raw}}}{P_P P_\perp_f N_{\text{HMS-A}}}$

Present Status:

- Detector calibration and optics analysis
- Data quality and event selection
- Cross section and asymmetry extraction
- Extract g_2^{\perp}, d_2^{\perp}

SUMMARY

- The experiment was successfully completed on 21st September, 2020.
- Results will provide new insight into spin structure of neutron and quark-gluon correlations, benchmark Lattice QCD predictions.
- Data analysis is in progress, exciting time for the collaboration.

ACKNOWLEDGEMENT

This work is partially supported by the U.S. Department of Energy Office of Nuclear Physics under Contract No. DEFG02-99ER41101.