LORIDA **INTERNATIONAL JNIVERSITY**

ABSTRACT

We developed the **Residual Mean Field** (RMF) model to analyze valence quarks inside the nucleon. We separate the nucleon into valence and residual subsystems using the formalism of effective light-front diagrammatic methods. Model parameterized through fitting of valence PDFs. Good agreement found for d_V and u_V , with some underestimation at high x for latter.

INTRODUCTION

• The nucleon state, $|N\rangle$, can be expressed as a Fock expansion in term of light front wave functions (LFWFs):

 $|N\rangle = \int \left[d\mu_{3q} \right] \psi_{3q} |qqq\rangle + \int \left[d\mu_{4q,\bar{q}} \right] \psi_{4q,\bar{q}} |qqq\bar{q}q\rangle$ $+ \int \left[d\mu_{3q,1g} \right] \psi_{3q,1g} | \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{g} \rangle + \cdots$

- No one has been able to derive the QCD LFWFs completely from theory. Instead, we model $|N\rangle$ phenomenologically by assuming:
- Nucleon = Valence x Residual* * gluons, sea quarks, meson cloud, etc.
- $\psi_{3q}|3q\rangle \otimes \psi_{VR}|VR\rangle$ $|N\rangle =$

The Residual Mean Field Model and a Possible Universal Limit for Valence PDFs

Christopher Leon Florida International University

THE MODEL

- 1. Core of valence quarks Effective bound fermions (fixed number)
- 2. Valid for x > 0.1 and different mechanisms dominate
- 3. Use a spectral function approach
- 4. Residual structure universal
- Can express valence PDF, $f_V(x, Q^2)$, through LFWFs:

- The Use LF relativistic, harmonic oscillators to model ψ_{VR} and ψ_{3q} .
- Assume massless valence quarks. The 8dimensional phase space integral above can be reduced to:

 $x f_V(x)$

$$= \mathcal{N}' x \int_0^{1-x} dx_R \frac{(1-x_R-x)^3}{(1-x_R)^3} \exp\left[-\mathbf{B}_R m_N^2 \left(x-\frac{\mathbf{m}_R}{m_N}\right)^2\right]$$

• 3 parameters: \mathcal{N}' , B_R , m_R

RESULTS

$$x_p \approx \frac{1}{2(n_V - 1)} \left(1 - \frac{m_R}{m_N} \right)$$
$$\Rightarrow x_p \leq \frac{1}{2(n_V - 1)}$$

TABLE I: Fitting parameters for valence d- and u- quarks.							
c	\mathbf{N}^d	$\mathbf{B}_R^d(\mathrm{GeV}^{-2})$	$\mathbf{m}_R^d~(\mathrm{GeV})$	u-quark N	I ^u E	B_R^u (GeV ⁻²)	\mathbf{m}_{R}^{u} (GeV)
LO	64	30	0.26	17	74	42	0.07
0	63	29	0.24	18	33	42	0.06
	47	6	0.32	20)8	50	0.05
2014	lo 76	50	0.16	22	28	60	0.04
20081	o 71	50	0.17	23	35	65	0.04

OUTLOOK

• Can analyze SIDIS, DVCS through TMDs, GPDs w/ model for x = 0.1 - 0.4(higher for d_V)

SUMMARY

We developed the Residual Mean Field Model

• Works well for d_V

Large x seems to indicate 2q and 3q needed for

 $\frac{u_V}{u_V}|_{x \to 1} = 0.09$ for RMF model

• Generalized model to n_V valence quarks and found new relation of peaks for valence PDFs

ACKNOWLEDGEMENTS

Done in collaboration with Misak Sargsian.

This work is supported by United States Department of Energy grant under contract DE-FG02-01ER41172.

Poster based on:

Leon, Christopher, and Sargsian, Misak. "Residual mean field model of valence quarks in the nucleon." The European Physical Journal C 82.4 (2022): 1-21