

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2024-02-21

Hall A – ECAL Test Stand

<u>Marc McMullen</u>

- Loaded new software and the shared variables to the cRIO 9045 located in the counting house; remapped all shared variables
 - ★ All sensors and control devices are connected via network to the cRIO expansion chassis
 - \star Tested the controls with the top supermodule channel

<u>Hall A – LAPPD</u>

Pablo Campero and Marc McMullen

- Completed 3D model of the detector test stand
- Determined dimension of the gantry's T-profile supports and the required hardware
- Revised LED box design model
 - * Removed battery power supply
 - * Added hole in the box base for wiring of LED power connection
 - ★ Reduced height of box from 75 mm to 60 mm
 - ★ Modeling inner support for LED head placement
 - * Researched methods to attach optical fiber to LED

<u>Hall A – Møller</u>

<u>Brian Eng</u>

- Completed wiring and code for power module DC current transducers on PLC side
- Updated Phoebus screen with new sensors for power module DC current transducers' readout

C: CS-Studio					– 🗆 ×	
Moller Test Lab ×						
				100 %	• • • • •	
		Moller Test La	b Sensors	_		
MPS LCW Flow	11.53 lpm	PLC Hard Interlo	PLC Hard Interlock FAULT		Power Module Current	
MPS LCW Temp	29.81 °C	PLC Soft Interloc	PLC Soft Interlock FAULT		-0.0 A	
Coil LCW Flow	16.11 lpm	Reset	Reset PLC Interlocks		0.0 4	
Coil LCW Temp	30.67 °C	O R	TDs	PM2 PM3	0.0 A	
ZFCT Current	330.44 A	Ambient	22.80 °C	PM4	0.0 A	
MPS Current	0.000 A	Coil A - Supply	31.40 °C			
		Coil A - Return	31.60 °C			
MPS Voltage	0.000 V	Coil B - Supply	31.40 °C			
		Coil B - Return	31.50 °C			
Voltage	e Taps					
MPS	-0.01 V	WCL - Return	31.00 °C			
WCL	-0.01 V					
Coil A	-0.02 V	LCW Supply	31 50 °C			
Coil R	-0.02 V					

Phoebus screen for Møller test, with new sensors in blue box

•

<u>Hall C – NPS</u>

Aaron Brown and Mary Ann Antonioli

- Debugging version 2 of control and monitoring program's failure to trip
 - ★ Doubled all subVIs of test program to see if the program works with multiple instances of the same subVIs
 - The first run did not work; may be due to improperly initialized arrays
- Working on requested change to control and monitoring program currently in use that would insert a delay between the scan of each Keysight channel
- Looking at how to proceed with version 3 of control and monitoring program
- Implemented remote power cycling of cRIO using network-enabled power distribution unit
 - ★ Uses an Ethernet port in the SHMS hut
 - * Set up the web application and wrote instructions for the users
 - When testing the power distribution unit, the first 40 back crystal temperatures failed to scan (multiplexer #1); fixed with a cable swap;
 - https://logbooks.jlab.org/entry/4254570
- Plotted crystal temperatures vs. ambient temperature (168 plots)

<u>Hall D – FCAL2</u>

George Jacobs and Mindy Leffel

- Populated 65 PMT bases; completed 1505 of 1650
- Cut 780 wires and stripped 390
- Tested 101 PMT bases; 241 completed

<u>EIC</u>

<u>Brian Eng</u>

• Attended remote workshop on inner detector mechanical and cooling

<u>EIC – DIRC</u>

Tyler Lemon, Peter Bonneau, Brian Eng, George Jacobs, and Marc McMullen

- Researching options for remote pressure monitoring by chase car of shipping crates' air suspension system
 - ★ Option 1: Bluetooth, wireless pressure transducer
 - Pros: easy to set up, easy monitoring using included app
 - Cons: long lead time of 4–5 weeks
 - * Option 2: Pressure-actuated switch to turn on a light visible by chase car
 - Pros: easiest setup, battery powered, no software, can receive all parts within one week
 - Cons: no remote readout of pressure, only status
 - * Option 3: Router-based setup with controller reading pressure transducer data
 - Pros: can receive all parts within one week
 - Cons: have to consider powering router and network configurations, more components that could fail
- Adding output for an interrupt signal from the laser interlock system to the photodiode DAQ system to allow program to notate in the data file when an interlock occurred

• Developing Python program to plot data during tests from USB accelerometers to record shock response of shipping crates' air suspension system

Screenshot of accelerometer's *x*-, *y*-, and *z*-axis measurements generated by first version of program. Accelerometer's z-axis was vertical for test (-1 g offset in data is earth's gravitational pull). Spikes in data are from bumping table near accelerometer.

- Developing automated startup sequence of Phoebus alarm system software packages in Linux for Phoebus version 4.6.10
- Began wiring diagram of the laser interlock interior control unit

DSG – Website

<u>Peter Bonneau</u>

• Revised DSG mailing list and subscribers webpages