

•

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2024-03-20

Hall A – ECAL Test Stand

Marc McMullen and Mindy Leffel

- Fixed Boolean process variables not updating in LabVIEW VI
 - All needed to be identified as Booleans in the EPICS shared variable records fields
- Started developing racks for controls equipment to be located in radiation shielding bunker
- Completed first power supply interface chassis and started wiring second chassis

Photo of completed power supply interface chassis

٠

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2024-03-20

<u>Hall A – LAPPD</u>

Pablo Campero and Marc McMullen

- Completed update to support frame model using 27.5" extrusions
 - ★ Initial drawing used 26" extrusions

Third-angle projection of the gantry support using 27.7" aluminum extrusions

- Completed LED box design
- Printed LED support and cover

Hall B Magnets

<u>Brian Eng</u>

•

- Troubleshooting Torus software quench (~20–35 A) when going from 0 A to full current
 - * 10-A steps from 0–60 A were okay, but fast dump when going to 100 A
 - ★ Noticed that VT6 was reading about half the voltage it should be
 - https://logbooks.jlab.org/entry/4268525
 - No changes made before, during, or after controlled access, when it ramped to 500 A with no issues

•

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2024-03-20

<u>Hall C – NPS</u>

<u> Aaron Brown and Mary Ann Antonioli</u>

- Generating plots of front sensor temperatures for crystal 0 for 11/25/2023
 - * According to Carlos Munoz, their automated daily temperature plots use a calibration equation to correct for improperly wired thermocouples
 - $T_{\text{plot}} = (21.4122 T_{\text{reading}}) + 20$
 - Equation applied to all sensors, regardless of whether incorrectly wired or not
 - ★ Equation caused discrepancy between the raw MYA plot and the calibrated plot
 - Developing a Python program to plot both the uncalibrated and calibrated data for all sensors for 11/25 and 12/5 (uncalibrated data already posted to website)

Photo of calibrated plot presented by Mark Jones

Calibrated plot by Aaron Brown (DSG) of crystal 0 front temperatures (front sensor 1), which matches the plot shown by Mark Jones

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2024-03-20

Crystal 0 Front Temperatures (Calibrated and Uncalibrated) vs. Time - 231125

Plot of calibrated (red) and uncalibrated (black) crystal 0 front temperatures (front sensor 1)

- Debugging version 2 of the control and monitoring LabVIEW program
 - Made the same changes to version 2.4 as were made in 2.1; now both versions run for about 8 minutes before crashing
 - Researching what can cause a LabVIEW program to lose connection to a realtime target
- Working on version 3 of control and monitoring program LabVIEW program
 - Completed subVI to read configuration file; included subVI in a larger subVI of configuration file code
 - ★ Began chiller subVI and main VI

Hall D – FCAL2

George Jacobs and Mindy Leffel

- Stripped 120 wires
- Tested 103 PMT bases; 542 good bases tested
 - ★ Five had shorted low voltage caps (output amplitude lower than expected), two had no signal, four had missing wires (visual inspection)

<u>EIC – DIRC</u>

<u>Tyler Lemon</u>

- Started developing accelerometer system for shipping crates that logs data over entire trip from JLab to SLAC
 - ★ Previously used accelerometers with only a 4-hour battery life
 - New system includes ten accelerometers read by an Arduino Uno R3 using a multiplexer that logs data to an SD card and is powered by a bank of 12 AA batteries; battery bank should last about five days
 - ★ Wrote code that initializes all system components, reads accelerometer data, and formats the data to a string for writing to the SD card

- In NX, designed two boxes for accelerometer system that will be 3D printed
 - The sensor box covers the accelerometers and has mounting holes for securing to crates
 - ★ The controller box holds the Arduino, multiplexer, power distribution, and RJ11 ports for connections to accelerometers
- Reviewed data from March 12 shipping crate suspension test
 - Developed program to stitch USB accelerometer data files together and to timestamp data based on accelerometer's real-time clock
 - ★ Sensors on interior basket of crate showed higher forces than those on barbox mock-up when putting on the interior basket lid and crate exterior lid
 - * After crate lids were secured, truck vibrations caused the most forces

Plot of accelerometer data during shipping crate suspension test

<u>DSG – R&D</u>

<u>Peter Bonneau</u>

- Developing self-test program for the Phoebus alarm system software packages
 - Program will aid in the independent setup and debugging of the Kafka message streams and the Phoebus alarm server

DSG – Website

Mary Ann Antonioli

• Completed updating website code so that talks include dates