The MOLLER Experiment: Measurement of a Lepton-Lepton Electroweak Reaction
Mark Pitt, Virginia Tech, for the MOLLER Collaboration

2019 Jefferson Lab User’s Organization Annual Meeting
Newport News, VA
June 24 - 26, 2019

MOLLER experiment objective:
“An Ultra-Precise Measurement of the Weak Mixing Angle using Møller Scattering”
(arXiv:1411.4088)
- sensitive to new physics from multi-TeV dynamics and MeV-scale mediators
Outline

• Parity-Violating Møller Scattering: Formalism and Physics Motivation

• MOLLER Experiment: Concept, design status, and R&D progress

• Project status, timeline, and outlook
Elastic scattering of longitudinally polarized electrons on unpolarized electrons

\[A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \]

Parity violating asymmetry:

\[A_{PV} \sim 33 \times 10^{-9} \text{ or } 33 \text{ ppb (parts per billion)} \]

\[\delta A_{PV} \sim \pm 0.8 \text{ ppb (2.4\% precision)} \]

next generation in size and precision of asymmetry for parity-violating electron scattering experiments

proportional to the electron’s weak charge \(Q^e_W \)

- precisely predicted in Standard Model

At tree level

\[Q^e_W = -\left(1 - 4\sin^2 \theta_W \right) \]

2.4\% precision on \(Q^e_W \) 0.1\% on \(\sin^2 \theta_W \)

- MOLLER is an approved JLab experiment with DOE CD-0, currently seeking CD-1 approval
- Will be factor of 5 improvement over previous measurement of SLAC E158
Parity Violating Asymmetry in Møller Scattering

The parity-violating asymmetry in Møller scattering is predicted at the ~1% level of theoretical accuracy (expect <0.5% after full 2 loop calculations done):

At tree level in Standard Model:

\[
A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{A_\gamma A_Z}{A_\gamma^2} = m_e E_{lab} \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3 + \cos^2\theta)^2} Q_W^e,
\]

Derman and Marciano (1978)

At tree level electron’s weak charge is given by:

\[
Q_W^e = -4g_V^e g_A^e = -\left(1 - 4\sin^2\theta_W\right)
\]

\[
C_{ee} \equiv 2g_V^e g_A^e
\]
Møller A_{PV} and New Physics

Standard EW Model = Renormalizable Gauge Theory + Spontaneous Symmetry Breaking
\rightarrow believed to be incomplete

Electroweak Interactions at scales much lower than the W/Z mass

Λ (\simTeV)

$M_{W,Z}$ (100 GeV)

Heavy Z’s, light (dark) Z’s, L-R models, compositeness, extra dimensions, SUSY…

Search for new flavor diagonal neutral currents

Tiny yet measurable deviations from SM processes with precise predictions

must reach $\Lambda \sim 10$ TeV
The MOLLER experiment provides:

- **Excellent sensitivity to Beyond Standard Model (BSM) physics**

 High precision measurement \(\frac{\delta(Q^e_W)}{Q^e_W} \sim \pm 2.4\% \)

 of suppressed SM observable \(Q^e_W = -(1 - 4 \sin^2 \theta_W) \sim -0.046 \)

 Sensitive to new neutral current amplitudes at \(\sim 10^{-3} G_F \)

 Most sensitive probe of new flavor and CP-conserving neutral current interactions over next decade

 - new TeV scale dynamics (\(Z' \), supersymmetry, doubly charged scalars,...)
 - weakly coupled MeV scale mediators (dark photons, ...)

- **High precision benchmark point within the Standard Model**

 \[\delta(\sin^2 \theta_W) \sim \pm 0.00024 \text{(stat.)} \pm 0.00013 \text{ (syst.)} \]

 \(\sim 0.1\% \) precision, comparable to sensitivity of best collider determinations
Two most precise values of $\sin^2 \theta_W$ at Z pole (SLC A_{LR} and LEP A_{fb}^b) disagree by 3σ; MOLLER has comparable sensitivity to these two values.

Many classes of Beyond Standard Model physics have little sensitivity at Z-pole but significant effects in measurements away from Z-pole such as low energy measurements.

- On Z resonance; A_Z is imaginary, no interference term

 $\left| A_Z + A_{\text{new}} \right|^2 \rightarrow A_Z^2 \left[1 + \left(\frac{A_{\text{new}}}{A_Z} \right)^2 \right]$

- Off Z resonance; electroweak interference

 $\left| A_Y + A_Z + A_{\text{new}} \right|^2 \rightarrow A_Y^2 \left[1 + 2 \left(\frac{A_Z}{A_Y} \right) + 2 \left(\frac{A_{\text{new}}}{A_Y} \right) \right]$

Significant discovery potential at $Q^2 << M_Z^2$
Mass Reach of Proposed MOLLER Measurement

Model-independent way to quantify effects of potential new high energy dynamics (ie. heavy Z’s, compositeness, extra dimensions, supersymmetry, ...) is from expressing them in terms of neutral “contact” 4-fermion interactions:

\[\mathcal{L}_{e_1 e_2} = \sum_{i,j=L,R} \frac{g_{ij}^2}{2\Lambda^2} \bar{e}_i \gamma_\mu e_i \bar{e}_j \gamma^\mu e_j \]

\[\Lambda = \text{mass scale} \quad g_{ij} = \text{chirality coupling} \]

Eichten, Lane, and Peskin, PRL50, 811 (1983)

\[\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = 7.5 \text{ TeV} \]

MOLLER 2.4% Q^e_w measurement

- Best contact interaction reach for leptons at low OR high energy
- To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider
Carefully chosen low energy experiments complement direct searches

\[\frac{1}{\Lambda^2} \mathcal{L}_6 \]

Lacking any direct evidence for new particles besides the Higgs, both colliders and fixed target experiments search for new physics by looking for deviations from Standard Model predictions.

LHC searching for lepton-hadron interactions

LEP200: lepton-lepton interactions

Fixed Target
E158 Reach

\[\Lambda_{LL}^{ee} \sim 8.3 \text{ TeV} \]

MOLLER Reach
\[\Lambda_{LL}^{ee} \sim 27 \text{ TeV} \]

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory.

\[\text{ATLAS} \]
\[\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \]
Prior: \(1/\Lambda^2\)
CI \(\rightarrow\) II

\[\text{LEP200 Reach} \]
\[\Lambda_{LL}^{ee} \sim 12 \text{ TeV} \]

\[\text{MOLLER Reach} \]
\[\Lambda_{LL}^{ee} \sim 27 \text{ TeV} \]

\[\text{arXiv:1707.02424} \]

\[qql \]
Global Context Summary

best contact interaction reach for leptons at low OR high energy: similar to LHC reach with semi-leptonic amplitudes

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

\[\delta(\sin^2\theta_W) = \pm 0.00023 \text{ (stat.)} \pm 0.00012 \text{ (syst.)} \rightarrow \sim 0.1\% \]

Best projected uncertainties among projects being considered over next 10 years: worldwide and at any energy scale

✧ **If LHC sees ANY anomaly in Runs 2 or 3**
 ★ The unique discovery space probed by MOLLER will become a pressing need, like other sensitive probes (e.g. g-2 anomaly)

✧ **Discovery scenarios beyond LHC signatures**
 ★ Hidden weak scale scenarios
 ★ Lepton Number Violating Amplitudes
 ★ Light Dark Matter Mediators
 ★ …

Most sensitive discovery reach over the next decade for CP-/flavor-conserving or LNV scattering amplitudes
MÖLLER Experiment: Design Parameters

\[A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{A_y A_Z}{A^2_{\gamma}} = m_e E_{\text{lab}} \frac{G_F}{\sqrt{2\pi \alpha}} \frac{4 \sin^2 \theta}{(3 + \cos^2 \theta)^2} Q^e_W, \]

- Avoid superconductors
 - \(\sim 150 \text{ kW} \) of photons from target
 - Collimation extremely challenging
- Quadrupoles a la E158
 - High field dipole chicane
 - Po separation from background
 - \(\sim 20\%-30\% \) azimuthal acceptance loss
- Two Warm Toroids
 - 100\% azimuthal acceptance
 - Better separation from background

Experiment designed to be nearly symmetric about \(\theta_{\text{CM}} = 90^\circ \) where FOM \((A^2\sigma)\) is highest.

- \(\theta_{\text{CM}} = 50^\circ - 130^\circ \)
- \(\theta_{\text{lab}} = 0.26^\circ - 1.2^\circ \)
- \(E_{\text{beam}} = 11 \text{ GeV} \)
- \(E' = 2.0 - 9.0 \text{ GeV} \)
- 125 cm long \(\text{LH}_2 \) target, designed for beam currents up to 70 \(\mu\text{A} \)
- @65 \(\mu\text{A} \), Moller rate \(\sim 122 \text{ GHz} \), total rate \(\sim 139 \text{ GHz} \)
- Irreducible background fraction \(\sim 12\% \)
- Nominal beam polarization \(\sim 90\% \)
MOLLER Experiment: Conceptual Overview

- 11 GeV, 90% polarized, 65 µA electron beam
- 125 cm long, 4 kW LH₂ target
- Precision collimation ("2-bounce" design minimizes backgrounds)
- Novel two (warm) toroid spectrometer with 7 azimuthal segments; just fits into Hall A.
- Variety of integrating and counting detectors for main measurement and backgrounds
How do we take the bulk of our data? Pretty simple actually...

• **Flux integration:** Integrate the light signal in the Cerenkov detectors and record response F every 0.5 msec (planned data-taking rate is 1.92 kHz)

• **Flip the electron beam helicity** and form the asymmetry from adjacent data samples for i^{th} pair:

 $$A_i = \left(\frac{F_R - F_L}{F_R + F_L} \right)_i \equiv \left(\frac{\Delta F}{2F} \right)_i$$

• **Remove correlations** to beam intensity, position, angle, and energy fluctuations:

 $$\left(A_{expt} \right)_i = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I} \right)_i - \sum_j \left(\alpha_j \left(\Delta X_j \right)_i \right)$$

• Repeat 30 billion times! (8256 hours of data-taking) to get desired statistical error

\[\sigma_{pair} \approx 93 \text{ ppm} \]
Projected Uncertainty Budget and Experimental Challenges

\[A_{\text{exp}} \sim A_{PV} \left(1 - f_{\text{bkgd}}\right) P_b \sim \]
\[(33 \text{ ppb}) (1 - 0.12) (0.90) \sim 26 \text{ ppb} \]

\[\delta \left(A_{\text{statistical}} \right) = 0.56 \text{ ppb} \]

\[A_{PV} = \frac{A_{\text{exp}} P_b}{1 - f_{\text{bkgd}}} - f_{\text{bkgd}} A_{\text{bkgd}} \]

<table>
<thead>
<tr>
<th>Error Source</th>
<th>Fractional Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>2.1</td>
</tr>
<tr>
<td>Absolute Normalization of the Kinematic Factor</td>
<td>0.5</td>
</tr>
<tr>
<td>Beam (second order)</td>
<td>0.4</td>
</tr>
<tr>
<td>Beam polarization</td>
<td>0.4</td>
</tr>
<tr>
<td>(e + p (+\gamma) \rightarrow e + X (+\gamma))</td>
<td>0.4</td>
</tr>
<tr>
<td>Beam (position, angle, energy)</td>
<td>0.4</td>
</tr>
<tr>
<td>Beam (intensity)</td>
<td>0.3</td>
</tr>
<tr>
<td>(e + p (+\gamma) \rightarrow e + p (+\gamma))</td>
<td>0.3</td>
</tr>
<tr>
<td>Transverse polarization</td>
<td>0.2</td>
</tr>
<tr>
<td>Neutral background (soft photons, neutrons)</td>
<td>0.1</td>
</tr>
<tr>
<td>Total systematic</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Statistics: High power beam, target; large acceptance; minimize random noise sources

Beam quality: Minimize helicity-correlated beam properties; small random fluctuations

Polarimetry: Redundant, high-precision polarimetry

Backgrounds: Novel spectrometer, “2 bounce” collimation, auxiliary detectors

Tracking: kinematic factor, backgrounds
High Power Liquid Hydrogen Cryotarget

- MOLLER goal: up to 70 µA on 125 cm LH₂ target - 4.0 kW power
- Build on Qweak success of using CFD (computational fluid dynamics) for target design
- Qweak target successfully operated up to 2.9 kW (compared to previous high of ~ 1.0 kW)

Main goal: minimize target density fluctuations (Δρ/ρ) (“target boiling noise”)

\[\Gamma_{stat} = \sqrt{\Gamma_{count}^2 + \Gamma_{target}^2} \]

want \(\Gamma_{target} \ll \Gamma_{count} \), \(\Gamma_{count} \approx 84 \text{ ppm} \)

Projection for MOLLER based on G0 and Qweak experience

\(\Gamma_{target} < 30 \text{ ppm for 70 µA, 5x5 mm}^2 \text{ raster, 2 kHz flip} \)
Collimators and beam shields are designed to provide a 2-bounce system to eliminate line of sight photons to detectors.

Collimator 1 – water-cooled
Collimator 2 – precision machined

4, 5 are “clean-up collimators”

Pb rings at large radius downstream are to shield detectors from backgrounds.

In addition, “blockers” at collimator 2 will be used for systematic studies.

Optimized spectrometer:
50% azimuth, 100% acceptance

FOM optimized at 90° in COM

- Accept all Møller scattered electrons in range Θ_{CM} = 50° – 130°
- Exploit identical particle nature for 100% acceptance; needs odd number of coils
Spectrometer employs a novel two toroid design

- **Upstream toroid** has conventional geometry
- **Downstream “hybrid” toroid novel design** inspired by the need to focus

Møller electrons with wide scattered energy range $E' = 2.0 – 9.0$ GeV while separating them from Mott (e-p) scattering background
Detectors Overview

- Integrating (current mode) detectors: asymmetry measurements of both signal and background, and beam and target monitoring.

- Tracking (counting mode) detectors: spectrometer calibration, electron scattering angle distribution and background measurements.

Quartz
- A_{pv} measurements for Møller, elastic and inelastic e-p events

Quartz/W
- Shower max. detector, provides a second, independent measurement of Møller peak

Pion detector
- Acrylic Cerenkov dets + two GEM planes for hadronic dilution/asymmetries

Lumis
- Monitor for target density fluctuations, false asymmetries

GEMS
- Backgrounds, kinematics, spectrometer diagnostics
Perspective View of Detector Assembly

- Small angle monitors
- Pion detectors
- Integrating quartz detector assembly
- Lead shield
- Shower max detectors
- Upstream GEM trackers
- PMT
- Air light guide
- Fused silica plate
- Tungsten silica sandwich
The most important task is the optimization of the detector geometry, as further discussed below. To address the criteria discussed above, the detector will be segmented, both in the radial and the azimuthal directions.

Quartz Cerenkov detectors will have radial and azimuthal segmentation. Quartz Cerenkov detectors will have radial and azimuthal segmentation. Quartz Cerenkov detectors will have radial and azimuthal segmentation. Quartz Cerenkov detectors will have radial and azimuthal segmentation.

Azimuthal defocusing – Different θ_{CM} bins

Main Moller peak in Region 5

Proposed Segmentation

28 azimuthal channels per radial bin

Moller peak (region 5): 84 azimuthal channels per radial bin

224 total channels

Rate per channel ~ few MHz – GHz (overall rate ~ 139 GHz)
Radial binning of measurements – measurement of background asymmetries under "Møller peak"

- Elastic e-p: ~12% of signal; asymmetry well known
- Inelastic e-p: <0.5% of signal but asymmetry ~ x20 larger and not well known

→ The inelastic contribution dominates rings 2 and 3, measured there

Simulated 18 asymmetry-type fit exploiting radial/azimuthal segmentation completed
Some Recent R&D Activities

Quartz and air light guide tests at Mainz MAMI

Tests of shower max prototype at SLAC endstation A

Prototype low noise I-V preamplifier

RTP Pockels cell tests for rapid helicity reversal

Prototype “hybrid” torus coil tests
Timeline and Status

MOLLER collaboration: ~ 120 authors, 30 institutions, 5 countries; Spokesperson: K. Kumar, U. Mass, Amherst

- JLab PAC approval Jan. 2009, JLab Director’s review Jan. 2010
- JLab PAC37 Ranking/Beam Allocation Jan. 2011 (A rating, 344 PAC days)
- Strong endorsement from DOE Science Review in Sept. 2014
- Project team formed in Jan. 2019; Project Manager: Howard Fenker
- Director’s Review in April 2019 – Technical Readiness, Risk, Cost

“...the Committee finds the maturity of the proposal to be appropriate for this stage of the project. ...encourage the Project to work with the Laboratory and the funding agency to obtain the support needed to expeditiously finalize the conceptual design, develop a defensible cost range, and produce the deliverables required for a CD-1 review.”

- MOLLER is a line item in President’s and House budgets for FY 20
- Current efforts directed toward CD-1 review, preparing to get CD-1 in April 2020
- 4 years construction, 3 years of running
• MOLLER represents an outstanding opportunity to take advantage of the unique instrument (the 11 GeV CEBAF beam) created by the JLab 12 GeV upgrade

• The science case remains compelling and the intention is to run physics at about the time that precision results from the high luminosity phases of 14 TeV LHC are becoming available (“LHC Run 3”)
 — best discovery reach for flavor and CP conserving processes over the next decade

• An enthusiastic and well-experienced international collaboration is eager to launch into the design, construction, operation, and physics analysis of the experiment