An interesting observations using exclusive meson electroproduction ratios from CLAS experiment

Phys(za)ics Seminar
Dec, 18, 2013

KIJUN PARK
Motivation
Phenomenology
Methods
Experiment
Analysis
Results
“Quark confinement”

Quark cannot be observed individually (charge current within nucleon which couple to virtual photon)
Quark can not observed individually (charge current within nucleon which couple to virtual photon)
"An infinitely strong the force field" that bind quarks inside of nucleon
"An infinitely strong the force field" that bind quarks inside of nucleon

"A string-like flux-tube" that "breaks" with the q̅q̅
The tail of two models

1. Quark-pair creation: “kernel” of exclusive production
2. What field couples to the q-q current?

\[\text{ss produced} \]

\[\text{From flux-tube} \]

\[\begin{align*}
\text{ud} & \quad \Lambda \\
\bar{s} & \quad \bar{s} \\
\text{From photon} & \\
\text{K}^+ & \\
\text{\textbf{Color flux-tube model}} & \\
\text{\textbf{3P}_0 \text{ state}} & \\
\end{align*} \]
L. Micu (1969)

Introduction

R. Carlitz/M. Kislinger (1970)
- q\bar{q} vacuum pair creation

Concept

A. Le Yaouanc (1972)
- Approximation as tunneling from harmonic OSC potential

Dynamics

A. Casher/H. Neuberger/S. Nussinov (1979)
- Description of color flow between quarks

A guide note

- A successful phenomenology developing
- Now they are well known authors of the high energy program PYTHIA

LUND model
Color flux-tube

- stretched between the outgoing quark and the remainder quarks from the hadronic target, breaks first at a space point located approximately \(\sim 1 \, \text{fm} \) behind the leading quark with the production of a \(qq \) followed by a second break \(\sim 1 \, \text{fm} \) or so behind the new leading quark and so on...

Probability
- Calculated by assuming the quarks are bound in a square-well potential with depth proportional to the Constituent Quark (CQ) mass

- The CQ mass is an effective degree-of-freedom

\[
(M)^2 = e^{-\pi (m^2 + pt^2)/\kappa}
\]
A quark pair creation

"The essence of many theories to describe a hadronic decays!"
Assumption: 3P_0 state

Reasons:

- It is natural way because it is the simple wave function: + parity / no net \mathcal{L}_p^{ℓ}, the \mathcal{Q}_n of the vacuum
- Matrix element is simple
 no exchange of \mathcal{L}_p^{ℓ}, and \mathcal{Q}_n
- Pair creation takes place in the middle of a color field
A limited experimental info of angular momentum state:

- A decay of η-meson proceed via two amplitudes (by d-wave and s-wave analyzed)

 Result: the s-wave dominated the d-wave by a factor of 4

 \rightarrow consistent with a 3P_0 wave function (not a 3S_1)

 \rightarrow 3S_1 wave function: a single vector gluon field produced the $q\bar{q}$

- CLAS "exclusive $K^+\Lambda$ electroproduction" the first measurement of large transferred polarization from a polarized electron beam by assuming that $q\bar{q}$ was produced in a spin state $s=0$.

 D. S. Carman et al.,
 PRL90 131804 (2003)

 P. Geiger, E. Swanson,
 PRD50 6855 (1994)
An idea to approach the puzzle ...
Distinguish Models

- Measure ratios: $K^+\Lambda : \pi^+n : \pi^0p$

Ratio: exponential in quark mass

0.2 : 1 : 1
Distinguish Models

- Measure ratios: $K^+\Lambda : \pi^+n : \pi^0p$

Ratio: proportional to charge square
How to obtain ...

Experiment and analysis
- Apr. 04 ~ Jul. 26, 2003
- $E_0 = 5.499\text{GeV}$ (pol. e), LH2 target
- Length = 5cm, $\Phi = 6\text{mm}$
- $I_b = 2250\text{A}$
- Trigger = $E_{\text{in}} \times E_{\text{tot}} \times CC$
- Luminosity $\sim 20\text{ fb}^{-1}$

<table>
<thead>
<tr>
<th>Quantity</th>
<th>No. Bins</th>
<th>Bin Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>6</td>
<td>1.65, 1.75, 1.85, 1.95, 2.05, 2.25, 2.55</td>
</tr>
<tr>
<td>$\cos \theta^*$</td>
<td>5</td>
<td>-1.0, -0.6, -0.2, 0.2, 0.6, 1.0</td>
</tr>
<tr>
<td>ϕ^*</td>
<td>12</td>
<td>-180., -150., ..., 150., 180.</td>
</tr>
<tr>
<td>Q^2</td>
<td>2</td>
<td>1.6, 2.6, 4.6</td>
</tr>
</tbody>
</table>
Single meson electroproduction

Unpol. cross-section w/ one-photon exchange approx.

\[
\frac{d^2 \sigma}{d\Omega_\pi^*} = \frac{p_\pi^*}{k_\gamma^*} \left[\sigma_0 + h \sqrt{2 \varepsilon_L (1 - \varepsilon)} \sigma_{LT'} \sin \theta_\pi^* \sin \phi_\pi^* \right]
\]

\[
\sigma_0 = \sigma_T + \varepsilon \sigma_L + \delta \sigma_{TT'} \sin^2 \theta_\pi^* \cos 2\phi_\pi^* + \sqrt{2 \varepsilon_L (1 + \varepsilon)} \sigma_{LT'} \sin \theta_\pi^* \cos \phi_\pi^*
\]

Incident electron energy \(e \)

Scattered electron energy \(e' \)

Electron energy loss \(\nu = e - e' \)

Invariant momentum transfer \(Q^2 = 2e e' (1 - \cos \theta_e) \)

Invariant mass of final state \(W = -Q^2 + m_p^2 + 2m_p \nu \)

Virtual photon 3-momentum \(|q| = (Q^2 + \nu^2)^{1/2} \)
• **Applying tools**
 - Phase space correction
 - Background subtraction
 - Acceptance correction using same PYTHIA/JETSET (fitting and MC generator)
 - Same kinematic bin size & range
 - Misc. corrections/cuts
 - Momentum correction
 - Electron energy (Hall-A)
 - Vertex correction and cut
 - Fiducial volume cut, missing mass cut (3\(\sigma\))
All consistent hypotheses for PID, a single positive track might pass the K+, \(\pi^+\), proton in \(\beta\)-momentum cuts if at high momentum. However, statistically, only the **correct hypothesis** will produce a **peak signal**. The alternate hypothesis simply forms a **smooth background** under the MMx. **No double-counting**
Correction done by Bethe-Heitler events method

Ratio = $\Delta p_e / p_e = [(p_{e,\text{calc.}} - p_{e,\text{meas.}}) / p_e \sim 0.$

- Both “elastic-event” and “Bethe-Heitler event” methods give same quality of correction. – FIU vs. INFN
... too much detail ...

pizzafiducial cut ...
moredchees...zZ...e
Analysis;
Overview of the missing mass spectrums

\[\text{ep} \rightarrow e'K^+ X \]

- Fit $\Lambda = 1.114\text{GeV} \pm 19\text{MeV}$
- Fit $\Sigma = 1.186\text{GeV} \pm 35\text{MeV}$

\[\text{ep} \rightarrow e'\pi^+ X \]

- Fit $n = 0.940\text{GeV} \pm 26\text{MeV}$

\[\text{ep} \rightarrow e'p X \]

- Fit $\omega = 776.1\text{MeV} \pm 53\text{MeV}$
- Fit $\eta = 546.9\text{MeV} \pm 50\text{MeV}$
- Fit $\pi^0 = 155.9\text{MeV} \pm 68\text{MeV}$
Analysis; $K^+\Lambda$

Example of fit = signal + background
Analysis; $n\pi^+$
Example of fit = signal + background

- N, $\chi^2=45.2$
 - $x=0.949$
 - $\sigma=0.021$
- BG, $\chi^2=2.2$
 - $x=-4.539$
 - $\sigma=10.287$

- N, $\chi^2=53.1$
 - $x=0.951$
 - $\sigma=0.022$
- BG, $\chi^2=4.3$
 - $x=-4.298$
 - $\sigma=9.514$

- N, $\chi^2=55.5$
 - $x=0.949$
 - $\sigma=9.195$
- BG, $\chi^2=3.8$
 - $x=-2.756$
 - $\sigma=0.022$

- N, $\chi^2=45.4$
 - $x=0.947$
 - $\sigma=0.022$
- BG, $\chi^2=2.2$
 - $x=-3.022$
 - $\sigma=8.724$

-$\phi^*=105$
-$\phi^*=135$
-$\phi^*=195$
-$\phi^*=225$
Analysis; pπ⁰
Example of fit = signal + background

\[\pi^0, \chi^2=1.5 \, \text{BG}, \, \chi^2=4.8 \]
\[x=0.175 \, \quad x=0.439 \]
\[\sigma=0.063 \, \quad \sigma=0.1 \]
Analysis: MC (FSGEN)

Event Generator: $n\pi^+, p\pi^0, \Delta K^+$:

- All three reactions are same simulation package
- FSGEN for electro-production
 - modification of FSGEN input parameters
- Approx. 5×10^6 event in each reaction

Kinematic range:

- electron beam energy = 5.499 GeV.
- $W = 0.9 - 3.2$ GeV
- $Q^2 = 1.0 - 4.0$ GeV2
- target = 2212 (proton)
- target position (Z[cm])

 $$ (z_{min}, z_{max}, radius) = (-27.5, -22.5, 0.2) $$

Distribution parameters:

- Q^2 power (nq^2) = 2.0

 $$ F(Q^2) = 1/x**nq^2 : \text{experimental fitting} $$
- t slope = 0.3

 $$ F(t) = \exp(-x*abs(t_{slop})) : \text{experimental fitting} $$
Analysis; Phase-space correction

$$\Delta \rho_2 = \frac{k}{W}$$

Results (samples) \(K^+ \Lambda \) & \(n\pi^+ \) & \(p\pi^0 \)

Acceptance/PS/Background-subtracted yields – \(\phi^* \) distribution and fit

\[
A + B \cos \phi + C \cos^2 \phi
\]
Phenomenological conclusion from the observation

1. γ^* couple to quark in proton
2. Significant ϕ^*-dependence
3. Constant term [$\sim \sigma_U (K^+\Lambda:n\pi^+:p\pi^0)$] ratio from ϕ^*- fit
4. K/π ratio falls off slowly as $\cos\theta^*$
5. $K^+/\pi^+ \sim 0.17 \pm 0.01 \pm 0.02$, $\pi^0/\pi^+ \sim 0.49 \pm 0.02 \pm 0.09$
Phenomenological conclusion from the observation

1. γ^* couple to quark in proton
2. Significant ϕ^*-dependence
3. Constant term [$\sim \sigma_U (K^+\Lambda:n\pi^+:p\pi^0)$] ratio from ϕ^*- fit
4. K/π ratio falls off slowly as $\cos\theta^*$
5. $K^+/\pi^+ \sim 0.17 \pm 0.01 \pm 0.02$, $\pi^0/\pi^+ \sim 0.49 \pm 0.02 \pm 0.09$

Probability given by the strangeness suppression factor

$$\lambda = \frac{2<\text{nss}>}{<\text{nuu}> + <\text{ndd}>} \sim 0.27$$
Phenomenological conclusion from the observation

1. γ^* couple to quark in proton
2. Significant ϕ^*-dependence
3. Constant term $[\sim \sigma_U (K^+\Lambda:n\pi^+:p)]$
4. K/π ratio falls off slowly as $\cos\theta$
5. $K^+/\pi^+ \sim 0.17\pm0.01 \pm0.02$, $\pi^0/\pi^+ \sim 0.49\pm0.02 \pm0.09$
Thank you for your attention

Questions/comments ?