Particle Detectors
Tools of High Energy and Nuclear Physics
Detection of Individual Elementary Particles

Howard Fenker
Jefferson Lab
June 14, 2016
12 GeV Detector Systems

Hall-C

Hall-B

Hall-D

GlueX/Hall D Detector

BCAL - barrel calorimeter
FCAL - forward calorimeter
CDC - central drift chamber
FDC - forward drift chambers
TOF - time-of-flight
Outline of Talk

- Interactions of Particles with Matter
 - Atomic / Molecular Excitation
 - Ionization
 - Collective Effects
 - Radiation Damage to Detectors
 - Detectors’ Effects on the Particle

- Using the Interactions: Particle Detectors
 - Detectors that sense Charge
 - Aside: Avalanche Multiplication
 - Ionization Chambers
 - Aside: Tracking
 - Detectors that sense Light
 - A basic Cerenkov Counter
 - Scintillators & arrays
 - Some Photo-sensors
 - Detectors sensitive to the Amount of light or charge - Calorimeters

- A Little Deeper…
 - Using second order effects
 - Particle Identification

- Systems of Detectors
 - Halls A,B,C,D Base Equipment
Just to get started…

- $p =$ momentum
- $m =$ mass
- $E =$ energy
- $c =$ speed of light in vacuum
- $v =$ speed of the particle we are observing
- $\beta = \frac{v}{c} = \frac{p}{E}$
- $\gamma = (1-\beta^2)^{-1/2} = \frac{E}{m}$
- $n =$ index of refraction
 - Light speed in the medium is c/n
Excitation (followed by de-excitation)

- Atomic Electron…
- Promoted to higher energy state (E_2)
 - Energy comes from the particle
- Electron falls back to ground state (E_1)
 - Released energy is carried by a photon

Before:
1. Fast-moving charged particle or photon.
2. Detector Atom/Molecule, at rest.

After:
- The initial particle or photon
- An Emitted Photon
- Atom/Molecule (possibly in excited state)

Energy: conserved
Interactions of Particles with Matter - Ionization

Ionization
- Atomic electron is knocked free from the atom.
- The remaining atom now has a net charge (it is an ion).
- The atom may also be left in an excited state and emit a photon as it returns to its ground state.
- In a crystal lattice such as Silicon, the ionized atom is called a “hole”.

Before:
1. Fast-moving charged particle or photon.
2. Detector Atom/Molecule, at rest.

After:
- The initial particle or photon.
- A Free Electron
- Ionized atom (possibly in excited state)
- Photon (sometimes)
Energy: conserved
The electric field of a particle may have a long-range interaction with material as it passes through a continuous medium.

Cerenkov Effect:
Turns ON when particle speed is greater than light speed in the medium: \(v = \beta c > c/n \)
Transition Radiation:

The sudden change in electric field as an *ultrarelativistic* charged particle passes from one medium to another results in ~keV photons (x-rays).

Ultrarelativistic: $\gamma \approx 1000$

$$\gamma \equiv (1 - \beta^2)^{-1/2} = E/m$$

Light is emitted at the angle

$$\Theta \sim 1/\gamma$$

(1 milliradian or less)
Interactions of Particles with Matter - **Radiation Damage**

- Particles can have lasting effects on the detector materials.
 - **Nuclear Collision**
 - Particle undergoes interaction directly with atomic nucleus.
 - May transmute the element (*radiation damage*).
 - May generate secondary particles which themselves are detectable (*neutron detector*).
 - **Lattice Dislocation**
 - Crystalline structure of a material may be disrupted (*diode leakage current increases*).
 - **Chemical Change**
 - Photographic Film (*photos fogged at airports*) or Emulsion (*visible particle tracks*).

While these effects can be exploited for particle detection, they may also cause permanent damage to detector components resulting in a detector which stops working.

This is sometimes referred to as “aging”.
For a particle to be detected it must interact with our apparatus.

ACTION = REACTION

The properties of the particle may be different after we have detected it.

- Different Momentum (direction)
- Lower Energy
- Completely Stopped

In fact, one method of determining a particle’s energy is simply to measure how far it goes through a material before stopping.
Interactions of Particles with Matter - Effect on the Particle

- Detector: Pavement.
- Signal: skid marks.
- Effect on car: reduced energy; altered momentum.
Summary: When charged particles pass through matter they usually produce either free electric charges (ionization) or light (photoemission).

Ahead: Most “particle” detectors actually detect the light or the charge that a particle leaves behind.

Next: In all cases we finally need an electronic signal which is big enough to use in a Data Acquisition System.
We need devices that are sensitive to only a few electron charges:

We need to amplify this charge.

Typical electronic circuits are sensitive to ~1µA = 6.2x10^{12} \text{ e}^-/s >> “a few”

By giving the electrons a push, we can make them move fast enough so that they ionize other atoms when they collide. Push those new electrons and each one ionizes more atoms, releasing more electrons. After this has happened several times we have a sizeable free charge that can be sensed by an electronic circuit.
Particle Detectors…

aside: Avalanche Multiplication in a Gas

- **Avalanche Gain**
 - Electric Field accelerates electrons, giving them enough energy to cause another ionization. Then those electrons do it again...
 - In the end we have enough electrons to provide a large electric current… detectable by sensitive electronics.
Photoelectric Effect
- A photon usually liberates a single electron: a *photoelectron*.

Secondary Emission
- Energetic electrons striking some surfaces can liberate MORE electrons. Those, in turn, can be accelerated onto another surface ... and so on.

Photomultiplier Tube (PMT)
Particle Detectors…

Gas Filled Wire Chamber

Lets use Ionization and Avalanche Multiplication to build a detector…

- Make a Box.
- Fill it with some gas: noble gases are more likely to ionize than others. Use Argon.
- Insert conducting surfaces to make an intense electric field: The field at the surface of a small wire gets extremely high, so use tiny wires.
- Attach electronics and apply high voltage.
- We’re done!!
Particle Detectors…
A Single-wire Gas Chamber

- Low Electric Field far from the wire.
- High Electric Field near the wire.

HV Supply

to computer
Using an ^{55}Fe X-Ray Source (5.9 keV) Argon- gas wire chamber you might expect to see the energy spectrum shown below.

Instead, you are likely to see this spectrum. Why???
Particle Detectors…

Multi-Wire Gas Chamber

- Multiwire Chamber:
 - WHICH WIRE WAS NEAREST TO THE TRACK?
“Why does he want all those wires??”

If we make several measurements of track position along the length of the track, we can figure out the whole trajectory.

It would be even nicer to know what part of each “wire” was struck…
Particle Detectors…
...better position information.

- Readout Options for Improved Resolution
 - And for flexible design
 - Charge Division
 - Time Division
 - Charge Interpolation
 - Wire Position gives “x”
 - Measurement along length of wire gives “y”.

It would be nicer still if we knew the distance between the particle and the struck wire…

2D Readout by determining
1: x from seeing which wire was struck;
2: y: position along the wire either from
- comparing charges arriving at the ends of the wire, or
- comparing time of arrival of the pulses at the two ends.

Compare Time of Arrival
Compare Pulse Height
Particle Detectors…
…higher resolution tracking.

Drift Chambers…

HOW FAR TO THE NEAREST WIRE?

1. Particle ionizes gas.

2. Electrons drift from track to wire.

3. We measure how long they drift and get x.
Particle Detectors: TPC…
…3D position information.

Time Projection Chamber (TPC): Drift through a Volume

- Just a box of gas with
 - Electric Field and
 - Readout Electrodes
- Readout elements only on one surface.
- Ionization Electrons drift to Surface for
 - Amplification
 - Charge Collection
- Readout Electrode Position gives (x,y)
- Time of Arrival gives (z).

H. Fenker - Detectors
Other ways to get Avalanche Gain: *Micromegas*

- **Gas Ionization** and **Avalanche Multiplication** again, but...
 - ... a different way to get an intense electric field,
 - ... no tiny wires,
 - ... a monolithic structure.

Micromegas

- **Micro** (small)
- **Mesh**
- **Gas** (sensitive medium)

Y. Giomataris, Ph. Rebourseard, J.P. Robert, and G. Charpak,
NIM A376 (1996) 29
Other ways to get Avalanche Gain: **GEM**

- **Gas Electron Multipliers**
 - ...yet another way to get an intense electric field,
 - ...isolates electronics from high-field region.

GEM

- ~400V / 50 µm
- 70µm dia. Holes @ 100µm

To DAQ

[Link to GEM page on CERN website]
Using a GEM... the BoNuS Radial TPC

- GEMs used in the BoNuS Detector were curved.
Particle Detectors: TPC... 3D position information.

“BoNuS” Radial TPC

Each dot represents the reconstructed (x,y,z) at which a signal originated.

Just line up the dots to reconstruct a track.
Other ways to get Avalanche Gain: *in Silicon*

- Ionization in a silicon lattice produces electron/hole pairs.
- If they are accelerated in a high E-field, they avalanche.
Other ways to get Avalanche Gain: *in Silicon*

- Ionization in a silicon lattice produces electron/hole pairs.
- If they are accelerated in a high E-field, they avalanche.
- Each time an electron is produced, a hole is also produced.
Other ways to get Avalanche Gain: *in Silicon*

- Ionization in a silicon lattice produces electron/hole pairs.
- If they are accelerated in a high E-field, they avalanche.
- Generally, BOTH electrons and holes start avalanches. The challenge is STOPPING them.
Other ways to get Avalanche Gain: *in Silicon*

- Ionization in a silicon lattice produces electron/hole pairs.
- If they are accelerated in a high E-field, they avalanche.
- Generally, BOTH electrons and holes start avalanches. The challenge is STOPPING them.

Avalanche Photo-Diode (APD)
Silicon Photomultiplier (SiPM)

Array of many tiny APD’s. Each one operates ~independently of the rest.
Particle Detectors…

Ionization Detectors

- **Ionization Chambers:** Dense Material \Rightarrow Lots of Charge. Typically no Amplification
 - **Solid Semiconductor:**
 - Silicon
 - Diamond
 - **Noble Liquid:**
 - Liquid Argon Calorimeter

Electrons are knocked loose in the material and drift through it to electronics. Readout strips could be VERY NARROW

Signals to Computer
Particle Detectors…

Ionization Detectors

Silicon-Strip Detector sketched at normal aspect ratio.
Particle Detectors…
Using the Light

Enough of Ionization!
What about Detectors that use the produced light?
Let’s build a Cerenkov Counter.

- Get a light-tight box.
- Fill it with something transparent that has the index of refraction you need...
- ...and some optical system to collect any light...
- ...then look for Cerenkov Light.
Particle Detectors...

Cerenkov Counter

If $v/c > 1/n$, there will be light.
If not, there is no light.

Wait a minute!!!
What's that photodetector?

Noble-Gas Cerenkov Counter

UVa 2013
We saw the **Photo-electron Multiplier Tube (PMT)** earlier.

They are commercially produced and very sensitive.

- Each incident photon →
 - Has ~25% probability to make a photoelectron (*Quantum Efficiency*).
 - The photoelectron cascades to make up to 10^8 electrons (*Gain*)!

- Fast! ...down to ~ few x 10^{-9} seconds.
Particle Detectors…
aside: *Other Ways to Sense Light*

- Photocathode + Secondary Emission Multiplication
 - Multichannel PhotoMultiplier Tubes (MCPMT)
 - Microchannel Plates (MCP)
- Solid-State (Silicon) Devices
 - Photodiodes (no gain)
 - Avalanche Photo-Diodes (APD)
 - Solid-State Photomultiplier (SSPM or SiPM)
 - Visible Light Photon Counter (VLPC)
- Hybrids: Photocathode +
 - Electron Acceleration +
 - Silicon
Materials that are good at emitting light when traversed by energetic particles are called **SCINTILLATORS**.

Many materials radiate light, but most also absorb that light so that it never gets out.

Scintillation Counters are probably the most widely used detectors in Nuclear and High Energy Physics.
Particle Detectors…
Scintillator uses

- Scintillation Counter Uses
 - Timing and Triggering
 - Paddles or Sheets
 - Tracking
 - Paddles or Strips
 - Fibers
 - Calorimetry & Particle ID
 - Each one consists of a piece of scintillating material optically coupled to a light-sensitive transducer.

H. Fenker - Detectors
Particle Detectors…
Scintillator Hodoscope

Scintillator Hodoscope “S1XY”
Installed in Hall-C SHMS June, 2015
Scintillation Counter Uses

- Energy Measurement - stop the particle
 - Large Blocks or
 - Large Volumes of Liquid

If we **STOP** the particle in a scintillator, then the **AMOUNT** of light detected provides a measure of the total **ENERGY** that the particle had. This detector is a **CALORIMETER**.

Lead Glass is often used as a calorimeter – its light is created by the Cerenkov Effect, not scintillation.
Materials other than scintillators can serve as calorimeters.

Example: Liquid Argon

In a **Liquid Argon Calorimeter** we collect the electron/ion charge that is released by the stopping particle.

(*Ionization Detector*)
Particle Detectors…

- That’s it! Those are (most of) the Detector Tools!
 - Wire Chambers (gas ionization chambers)
 - Single Wire
 - Multi-Wire
 - Drift, TPC, etc.
 - Solid State Detectors
 - Cerenkov Counters
 - Scintillators
 - Calorimeters
What about measuring energy when the particle doesn’t completely stop?

If we have a “thin” detector, the amount of energy lost by a particle as it passes all the way through it is related to its speed...
Particle Detectors: Energy Loss

- **Energy Loss**
 - Heavy Charged Particles lose energy primarily through ionization and atomic excitation as they pass through matter.
 - Described by the **Bethe-Bloch** formula:

\[
-d\frac{E}{dX} = 4\pi N_A r_e^2 m_e c^2 \frac{Z}{A} \beta^2 \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta}{2} \right]
\]

- where β, γ, relate to particle speed, z is the particle’s charge.
- The other factors describe the medium (Z/A, I), or are physical constants.
Particle Detectors: Energy Loss

- Energy Loss

\[-\frac{dE}{dx} \text{ vs. } \Gamma \cdot \beta \]

\(-\frac{dE}{dx}\) is a function ONLY of the material and the particle speed and charge.

\text{Hydrogen (3 atm)}

\text{dE/dx} in units of TeV/mm

\begin{align*}
\text{Non-Relativistic} & \quad \text{Minimum-Ionizing} \\
\text{Ultra-Relativistic} & \quad \Gamma \cdot \beta
\end{align*}
Energy Loss-

- **Here is the same curve plotted vs. momentum for different particles passing through Argon…**

If we know we are looking at a pion, we can get some measure of its momentum by seeing how much energy it loses in a “thin” detector.

OR: we might determine whether a particle is a pion, electron, kaon, or proton if we know the momentum already.
Energy Loss-

➢ ... and here is the curve shown with some representative imprecision.

Measurements of energy loss are limited both by detector resolution and by the fundamental statistical nature of the energy loss process...
Particle Detectors: Energy Loss

- Energy Loss - ...some actual data

Fig. 13 Average differential energy loss measured as a function of momentum for fast charged particles in the Berkeley TPC. Particles of different mass can be very well identified in the low-momentum zone, and with less resolution in the relativistic rise region.

Particle Detectors: Energy Loss

- Of course, if the detector works by measuring lost energy, then the particle has that much less energy after passing through the detector.
Particle Detectors: Multiple Coulomb Scattering

Detectors scatter particles even without energy loss… only the direction is changed.

- MCS theory is a statistical description of the scattering angle arising from many small interactions with atomic electrons.
- MCS alters the direction of the particle.
- Most important at low energy.

\[\langle \Theta \rangle = 0 \]

\[\sigma_\Theta = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{x / X_0} [1 + 0.038 \ln(x / X_0)] \]

\(\beta \) is particle speed, \(z \) is its charge, \(X_0 \) is the material’s Radiation Length.
We saw a Cerenkov Counter that signaled when a particle was \textit{fast}.

\[\text{speed} = f(m,p) \]

If we know \(p \), can we use a Cerenkov counter to determine \(m \)?
YES! In fact, Cerenkov and Transition Radiation Radiation Detectors are Used primarily for Particle Identification

- At fixed momentum, Heavy particles radiate less than Low-mass particles.
- Further: angular distribution of radiation varies with particle speed.

\[
\beta = \frac{\nu}{c} = \frac{p}{E} = \frac{p}{\sqrt{m^2 + p^2}}
\]

\[
\gamma = (1 - \beta^2)^{-1/2} = \frac{E}{m} = \frac{\sqrt{m^2 + p^2}}{m}
\]
Particle Detectors: Particle Identification

Faster Particle \rightarrow More Cerenkov Photons

Some representative Indices of Refraction

\[n-1 \sim \begin{align*}
0.4 & \text{ lucite} \\
0.02 & \text{ aerogel} \\
0.0001 - 0.005 & \text{ gases}
\end{align*} \]

\[N_{pe/cm} \text{ for } n-1 = 0.015000 \]

\[n = 1.015 \]
Particle Detectors: Particle Identification

Faster Particle \rightarrow Wider Cerenkov Angle

\[n = 1.015 \]

\[\theta = \cos^{-1} \left(\frac{1}{n\beta} \right) \]

- e^\pm
- π^\pm
- K^\pm
- p^\pm
Lucite Cerenkov Counter: use Critical Angle for Total Internal Reflection to differentiate Cerenkov Angles.
Transition Radiation Detector: Particle ID at High Momentum.

Each *transition* makes only \(~0.01\) photons…

Need many transitions

Need many detectors
Particle Detectors: Particle Identification

Transition Radiation Detector: Particle ID at High Momentum.

Each *transition* makes only ~0.01 photons…

Need many transitions

Need many detectors
The most straightforward way to measure particle speed is to *time* it:

A Time-of-Flight (TOF) Counter

Knowing the separation of the scintillators and measuring the difference in arrival time of the signals gives us the particle speed.
Particle Detectors: aside: magnetic spectrometer

Just as light of different colors is bent differently by a prism...

Nature lets us measure the momentum of a charged particle by seeing how much its path is bent by a magnet.

\[\theta = \frac{0.3 \cdot B d l}{p c} \]

kG, cm, MeV/c
Putting it all Together: A Detector System

The Base Equipment in all of the Experimental Halls is composed of optimized arrangements of the same fundamental detector technologies...

Hall-A: HRS\text{\textsubscript{L}} / HRS\text{\textsubscript{R}}
Hall-B: CLAS
Hall-C: HMS, SOS
Hall-D: GlueX Spectrometer

- **Scintillators** for Triggering and Timing
- **Magnetic Field** for Momentum Measurement
- Drift Chambers for **Tracking**
- Particle Identification by
 - Cerenkov Counters
 - Time-of-Flight
- Lead-Glass or Scintillator **Calorimetry**
CLAS12 Detectors

- 3 Regions of Drift Chambers
- High Threshold Cerenkov
- Solenoid Magnet
- Central Time of Flight
- Silicon Vertex Tracker

- 3 Panels of Time of Flight – Low Threshold Cerenkov
- Torus Magnet
- Pre-Shower Calorimeter
- Electromagnetic Calorimeter

H. Fenker - Detectors
GlueX/Hall D Detector

- **BCAL**: barrel calorimeter
- **FCAL**: forward calorimeter
- **CDC**: central drift chamber
- **FDC**: forward drift chambers
- **TOF**: time-of-flight
Hall C SHMS 11 GeV/c
Super Conducting Spectrometer

- HB
- Dipole
- Q1
- Q2
- Q3
- Steel Support Structure
- Concrete Detector Shield House
- Removable Roof
- Power Supplies
- Cryogenics Transfer Line
- Hall C Pivot
Putting it all Together: A Detector System
Particle Detectors - Summary

- Detect Particles by Letting them Interact with Matter within the Detectors.
- Choose appropriate detector components, with awareness of the effects the detectors have on the particles.
- Design a System of Detectors to provide the measurements we need.
Particle Detectors - Suggested Reading

- **The Particle Detector BriefBook**: physics.web.cern.ch/Physics/ParticleDetector/BriefBook
- **Particle Detectors** by Claus Grupen, Cambridge University Press
- **Techniques for Nuclear and Particle Physics Experiments** by W.R. Leo, Springer-Verlag 1994
- RCA or Phillips or Hamamatsu **Handbook for Photomultiplier Tubes**
- **Slides from This Lecture**: https://userweb.jlab.org/~hcf/detectors
Appendix
Using an 55Fe X-Ray Source (5.9 keV) Argon- gas wire chamber you might expect to see the energy spectrum shown below.

Instead, you are likely to see this spectrum. Why???
Gas Chamber puzzles

Testing the gas chamber using monochromatic photons.

55Fe X-Ray Source (5.9 keV)

Argon gas wire chamber.

• Some x-rays leave all their energy as ionization

• Because we are using Argon, there is a relatively good chance that ~3 keV photons will escape, leaving behind 5.9-3=2.9 keV.

• If the gas box has Aluminum walls, they will “glow” at 1.5 keV when struck. Those 1.5 keV photons will ionize the gas and show up as another energy peak in the data.

• If the DAQ records only those signals above some threshold, this will appear as an edge.
Putting it all Together: A Detector System
Putting it all Together:
A Detector System
Putting it all Together: A Detector System