Development of a Polarized 3He Beam Source
And Applications in Ghostbusting

J. Maxwell

Jefferson Lab Pizza Seminar
June 8th, 2016
Outline

1 Polarized 3He Source
 Source Design
 Polarization and Relaxation Tests
 High Field Tests
 Next Steps

2 Ghostbusters (2016)
 He3 Polarizer on Film
 Proton Pack Design
 Other Fun Stuff
Outline

1. Polarized 3He Source
 - Source Design
 - Polarization and Relaxation Tests
 - High Field Tests
 - Next Steps

2. Ghostbusters (2016)
 - He3 Polarizer on Film
 - Proton Pack Design
 - Other Fun Stuff
Polarized Scattering Experiments

- Polarized targets and sources are analogous to polarized lenses in sunglasses
 - Light from the sun is unpolarized
 - Reflected glare from the water or the road is more likely horizontally polarized
 - By selecting only vertically polarized light, we see a different picture
Why a Polarized Helium 3 Source?

• Polarized DIS crucial for study of neutron spin structure
 • PPDFs; tests of QCD, Bjorken sum rule; higher energies

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>88.6%</td>
</tr>
<tr>
<td>S'</td>
<td>1.5%</td>
</tr>
<tr>
<td>D</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

• S-state 3He: nuclear spin carried by the neutron
• 3He’s magnetic moment close to n, compatible with RHIC spin manipulation
• Polarized 3He ions offer a “polarized neutron beam” for RHIC and a future EIC
History of 3He Ion Sources

- Rice University, 1969: MEOP for 3He$^+$
 - 16 keV, 8 particle μA at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for 3He$^{++}$
 - 29 keV, 50 particle μA at 65% polarization
- Laval University, 1980: Stern-Gerlach for 3He$^+$
 - 12 keV, 100 particle nA at 95% polarization

Our Proposal1

- RHIC’s **Electron Beam Ion Source** Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize 3He$^{++}$ for injection

History of 3He Ion Sources

- Rice University, 1969: MEOP for 3He$^+$
 - 16 keV, 8 particle μA at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for 3He$^{++}$
 - 29 keV, 50 particle μA at 65% polarization
- Laval University, 1980: Stern-Gerlach for 3He$^+$
 - 12 keV, 100 particle nA at 95% polarization

Our Proposal1

- RHIC’s **Electron Beam Ion Source** Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize 3He$^{++}$ for injection

Source Design Goals

- Polarize to $\sim 70\%$ at 1 torr with 10 W laser
- Transfer $\sim 10^{14}$ 3He/s to EBIS at 5 T & 10^{-7} torr
- Deliver 1.5×10^{11} 3He$^{++}$ ions per 20 μsec pulse
RHIC’s Electron Beam Ion Source
RHIC’s Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- **Any** species, switch between species in 1 sec
RHIC’s Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm\(^2\) Current Density
- **Any** species, switch between species in 1 sec

Figure 4. (A) A schematic of the EBIS course. (B) The electric potential along the axis of the source.
EBIS Beams Run to Date

D, $^3\text{He}^{2+}$, $^4\text{He}^{1+,2+}$, Li$^{3+}$, C$^{5+}$, O$^{7+}$, Ne$^{5+}$, Al$^{5+}$, Si$^{11+}$, Ar$^{11+}$, Ca$^{14+}$, Ti$^{18+}$, Fe$^{20+}$, Cu$^{1+}$, Kr$^{18+}$, Xe$^{27+}$, Ta$^{38+}$, Au$^{32+}$, Pb$^{34+}$, U$^{39+}$. Capable of $^3\text{He} \Rightarrow ^3\text{He}^{++}$ at nearly 100%
3He Polarization

- EBIS has done much of the work for us!
- Need polarized 3He; pure sample for injection
- Revisit MEOP technique\(^2\) with modern lasers

Metastability Exchange Optical Pumping

- Mature technique: polarized targets, medical imaging\(^3\)
- Laser technological advances give 10 W @ 1083 nm easily
- Polarize at \(\approx 1\) torr, \(\approx 30\) G or higher
- Pure 3He sample, faster than SEOP

\(^3\) Kauczor et al, JMRI, 7 (1997).
MEOP Mechanism

2^3P_0

CP Laser 1083 nm

2^3S_1

RF Excitation (~1 ppm)

1^1S_0

m_F = -3/2

-1/2

1/2

σ^+

Equal Probability Decay

Equal Probability Exchange

Net Polarization

Metastability Exchange

JLab, June 8, 2016
Depolarization Contributions

• Wall Bounces
 • 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 • 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 • Negligible depolarization with glass walls

• Magnetic field gradients from EBIS stray field
 • Hinder Polarization
 • Depolarization During Transport to EBIS

• Small Contributions During Ionization:
 • Charge Exchange: $^3\text{He}^+ + ^3\text{He}^{++} \rightarrow ^3\text{He}^{++} + ^3\text{He}^+$
 • Recombination: $e^- + ^3\text{He}^{++} \rightarrow ^3\text{He}^+$
 • Spin Exchange from Beam
Depolarization Contributions

• Wall Bounces
 • 3 mm long, 0.1 mm diameter leak: 1 torr to 10^{-7} torr
 • 1 m long, 2 mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 • Negligible depolarization with glass walls

• Magnetic field gradients from EBIS stray field
 • Hinder Polarization
 • Depolarization During Transport to EBIS

• Small Contributions During Ionization:
 • Charge Exchange: $^3\text{He}^+ + ^3\text{He}^{++} \rightarrow ^3\text{He}^{++} + ^3\text{He}^+$
 • Recombination: $e^- + ^3\text{He}^{++} \rightarrow ^3\text{He}^+$
 • Spin Exchange from Beam
Depolarization Contributions

• Wall Bounces
 • 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 • 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
 • Negligible depolarization with glass walls

• Magnetic field gradients from EBIS stray field
 • Hinder Polarization
 • Depolarization During Transport to EBIS

• Small Contributions During Ionization:
 • Charge Exchange: $^3\text{He}^+ + ^3\text{He}^{++} \rightarrow ^3\text{He}^{++} + ^3\text{He}^+$
 • Recombination: $e^- + ^3\text{He}^{++} \rightarrow ^3\text{He}^+$
 • Spin Exchange from Beam
Depolarization from Field Gradients

From Schearer4, we have:

\[
\frac{1}{\tau} = \frac{2}{3} \frac{\Delta B_t}{|B_l|^2} \langle v^2 \rangle \frac{\tau_c}{\omega_0^2 \tau_c^2 + 1}
\]

- Transverse gradient ΔB_t
- Holding field B_l
- Velocity v
- Average time between collisions τ_c
- Resonant frequency ω_0

We can map regions of stray field which should be problematic.

4Schearer, Walters, Phys. Rev. 139(5A) (1965).
Calculating Relaxation Time in EBIS B field
Calculating Relaxation Time in EBIS B field

Map in mm of Transverse Field Gradient
Calculating Relaxation Time in EBIS B field

Map in mm Relaxation Time (1 torr)
Calculating Relaxation Time in EBIS B field

Map in mm Relaxation Time ($<10^{-2}$ torr)
Two Source Design Options: Low or High Field?

- Two design possibilities present themselves:
 - Polarize at 30 G in EBIS stray field using field correction, then transfer into EBIS
 - Polarize in EBIS, or nearby, extending field region
MIT Test Lab

- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients\(^5\)
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development\(^6\)

\(^5\) Maxwell, Epstein, Milner, NIM A (777), 2015.
\(^6\) Maxwell, Epstein, Milner, NIM A (764), 2014.
Transferring between B Fields via Diffusion
Relaxation Time Map, Helmholtz and Solenoid
Polarization Transfer via Diffusion

Polarization measured via discharge light in each cell
Relaxation in Both Cells

Fits roughly match relaxation & diffusion model of 2 cells, line
BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial polarization tests with NO field correction
- 30 G solenoid allows small increase of B_l
- Tested at two locations on axis of solenoid, one off axis
Stray Field Results

- Spare solenoid at 1 T
- Polarizing sealed cell, which attained 50% in 30 G solenoid
- At location of interest in stray field:
 - Only stray field, 17% with ∼0.5 A pump
 - Only stray field, 28% with ∼10 A pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected

JLab, June 8, 2016
Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little
Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little
MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years
- M. Abboud, Europhys. Lett. 68, 2004
 - 1.5 T; 0.5, 2 W OP laser
 - 1.3, 8, 32, 67 mbar
 - Circles and stars are at 1.5 T, others at low field
MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years

 - 4.7 T, 0.5 W OP laser
 - 1.3, 32, 67, 96, 128, 267 mbar
 - Noted trouble with RF for 1 torr cell
BNL High Field Tests

- EBIS spare solenoid at 1, 2, 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
 - AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
 - 5 cm OD, 5 cm long
 - 3 cm OD, 10 cm long
Optical Probe Polarimetry

- High or low field, no calibration required
- Sweep low power probe laser through two $2^3S - 2^3P$ transitions to directly probe states 7,8

Optical Probe Polarimetry

- High or low field, no calibration required
- Sweep low power probe laser through two $^{2}S_{1/2} \rightarrow {^{2}P_{1/2}}$ transitions to directly probe states7,8

Measuring Optical Pumping
Measuring Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

M = 0
M = 0.89

Preliminary
High Field Polarization Results

- Error set at 10% while measurement is investigated
High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it’s easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser
High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it’s easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser
High Field Source Design: EBIS Upgrade

- New solenoid-injector section will improve EBIS operation with all gases, allow polarized $^3\text{He}^{++}$
- Lengthened ion trap brings increased heavy ion yield
- Test can be built and tested without affecting EBIS operation: goal > 80% polarization $^3\text{He}^{++}$ beam
BNL–MIT Pol He3 Source Collaboration:

- Brookhaven National Laboratory
- MIT Laboratory for Nuclear Science
 - C. Epstein, J. Maxwell, R. Milner
 - Bates technical support

We gratefully acknowledge the advice of

- P.J. Nacher, G. Collier

Work supported by

- DOE Office of Nuclear Physics,
 R&D for Next Generation Nuclear Physics Accelerator Facilities
- MIT Department of Physics
Outline

1 Polarized 3He Source
 Source Design
 Polarization and Relaxation Tests
 High Field Tests
 Next Steps

2 Ghostbusters (2016)
 He3 Polarizer on Film
 Proton Pack Design
 Other Fun Stuff
Ghostbusters (2016)
He3 Polarizer on Film

Development of a Polarized \(^3\)He Beam Source

JLab, June 8, 2016
J. Maxwell
Development of a Polarized 3He Beam Source

JLab, June 8, 2016

J. Maxwell
Development of a Polarized 3He Beam Source

JLab, June 8, 2016

J. Maxwell
Development of a Polarized 3He Beam Source

JLab, June 8, 2016

J. Maxwell
Ghostbusters (2016)
He3 Polarizer on Film

JLab, June 8, 2016
J. Maxwell
Development of a Polarized 3He Beam Source

He3 Polarizer on Film
PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>big_cell</td>
<td>75mm OD, 75mm length</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>- to 8mm_glass</td>
<td>9_to_8mm_glass</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Or_973</td>
<td>HV Glass Valve</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>90_deg_90_deg</td>
<td>6mm ID, 8mm OD Pyrex tube</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>glass_60_100</td>
<td>Neoprene Flange</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>glass_60_100</td>
<td>75mm OD cell with optically clear windows</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>big_cell_to_ejector</td>
<td>big_cell_to_ejector</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>bend</td>
<td>bend</td>
</tr>
</tbody>
</table>

75mm OD, 8mm OD Pyrex tube

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
He3 Polarizer on Film

50mm OD cell with optically clear windows

PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>small_cell</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9_to_8mm_glass</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CG-9731</td>
<td>H Valves</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>small_cell_to_center</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Glass_H100</td>
<td>Glass Flange</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Glass_inter_970</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Tube</td>
<td></td>
</tr>
</tbody>
</table>

JLab, June 8, 2016

J. Maxwell 42
Ghostbusters (2016)
He3 Polarizer on Film

Development of a Polarized 3He Beam Source

JLab, June 8, 2016
J. Maxwell
Development of a Polarized ^3He Beam Source

He3 Polarizer on Film

JLab, June 8, 2016

J. Maxwell
Development of a Polarized 3He Beam Source

He3 Polarizer on Film

JLab, June 8, 2016

J. Maxwell
Ghostbusters (2016)

He3 Polarizer on Film

JLab, June 8, 2016

Development of a Polarized 3He Beam Source
Development of a Polarized 3He Beam Source
Ghostbusters (2016)

He3 Polarizer on Film

JLab, June 8, 2016 J. Maxwell
Development of a Polarized 3He Beam Source

He3 Polarizer on Film

JLab, June 8, 2016

J. Maxwell
Development of a Polarized 3He Beam Source

He3 Polarizer on Film

JLab, June 8, 2016

J. Maxwell
Ghostbusters (2016)
He3 Polarizer on Film

Development of a Polarized 3He Beam Source

JLab, June 8, 2016
J. Maxwell
Development of a Polarized 3He Beam Source
He3 Polarizer on Film

JLab, June 8, 2016

Development of a Polarized 3He Beam Source
Development of a Polarized 3He Beam Source

He3 Polarizer on Film

JLab, June 8, 2016

J. Maxwell
Development of a Polarized 3He Beam Source
He3 Polarizer on Film
JLab, June 8, 2016
J. Maxwell
Development of a Polarized 3He Beam Source

JLab, June 8, 2016
Development of a Polarized 3He Beam Source
Development of a Polarized 3He Beam Source
A New Proton Pack
Ghostbusters (2016)
Proton Pack Design
What are Ghosts? How do you catch them?

• ”Unphysical” occurrences isolated in time & space
 • Dark matter? Fields, particles outside Standard model?

• Spectral Ether: a new gauge field through which unknown entities can interact with our world
 • Localized excitation of the ether, ”spectral foam,” results in regions in space and time where significant coupling exists between spectral matter and Standard Model particles
 • ”Ethereal polarization,” good/bad slimes from GB 2

• Proton Pack?
 • Absorbs spectral energy via unidentified secondaries generated by beam of high energy protons
 • “Unlicensed nuclear accelerator” on your back
What are Ghosts? How do you catch them?

- "Unphysical" occurrences isolated in time & space
 - Dark matter? Fields, particles outside Standard model?
- Spectral Ether: a new gauge field through which unknown entities can interact with our world
 - Localized excitation of the ether, "spectral foam," results in regions in space and time where significant coupling exists between spectral matter and Standard Model particles
 - "Ethereal polarization," good/bad slimes from GB 2
- Proton Pack?
 - Absorbs spectral energy via unidentified secondaries generated by beam of high energy protons
 - "Unlicensed nuclear accelerator" on your back
What are Ghosts? How do you catch them?

• "Unphysical" occurrences isolated in time & space
 • Dark matter? Fields, particles outside Standard model?

• Spectral Ether: a new gauge field through which unknown entities can interact with our world
 • Localized excitation of the ether, "spectral foam," results in regions in space and time where significant coupling exists between spectral matter and Standard Model particles
 • "Ethereal polarization," good/bad slimes from GB 2

• Proton Pack?
 • Absorbs spectral energy via unidentified secondaries generated by beam of high energy protons
 • "Unlicensed nuclear accelerator" on your back
Cyclotron: 1932
Synchrotron: 1945
New Proton Pack

- Miniature Superconducting Proton Synchrotron
 - RF plasma ECR proton source
 - Cryogen reservoir with cryocooler for active cooling
 - “Magic” beam steering
 - Plasma beam halo

- Timeline:
 - Saturday night: “Can you label this?”
 - Sunday: PANIC
 - Sunday night: “How’s this?”
 - Monday: Tweet
Development of a Polarized 3He Beam Source

Proton Pack Design

JLab, June 8, 2016

J. Maxwell
Ghostbusters (2016)
Proton Pack Design
Development of a Polarized 3He Beam Source
JLab, June 8, 2016
J. Maxwell
Ghostbusters (2016)
Proton Pack Design

Development of a Polarized 3He Beam Source

Turbopump Set
Hydrogen Tank
Proton Pack Pump-out Connection
Ectoplasm Analysis Unit
Power Cell
Long-range Psychokinetic Energy (PKE) Scanners
Pumping Lines
Loudspeaker
Positive & Negative Polarized Spectral Foam Detectors
Baseline PKE Reference Cell
Reserve Liquid Helium Dewar
Proton Pack Spectral Charge Grounding Line
Ghostbusters (2016)

Development of a Polarized 3He Beam Source

Proton Pack Design
Development of a Polarized 3He Beam Source

Proton Pack Design

Ghostbusters (2016)
Ghostbusters (2016)

Other Fun Stuff

Development of a Polarized 3He Beam Source

JLab, June 8, 2016

J. Maxwell
Ghostbusters (2016)
Other Fun Stuff
Development of a Polarized 3He Beam Source

JLab, June 8, 2016
J. Maxwell

[Image of a person in a lab setting with equipment]
Ghostbusters (2016)
Development of a Polarized 3He Beam Source

Other Fun Stuff
Who you gonna call?!
Development of a Polarized 3He Beam Source
Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
 - Spin precession frequency = frequency of perturbing B field
 - Imperfection: $\nu_s = G\gamma = n$
 - Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
 - Anomalous g-factor G
 - Resonances for p in RHIC
- Siberian Snakes to the rescue
 - Rotate spin 180°, allow the wobble to unkink itself
 - Partial snakes can be used for some imperfections

Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
 - Spin precession frequency = frequency of perturbing B field
 - Imperfection: $\nu_s = G\gamma = n$
 - Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
 - Anomalous g-factor G
 - Resonances for p in RHIC\(^9\)
- Siberian Snakes to the rescue
 - Rotate spin 180°, allow the wobble to unkink itself
 - Partial snakes can be used for some imperfections

RHIC Spin Manipulation

Absolute Polarimeter (H↑ jet)

RHIC pC Polarimeters

Siberian Snakes

Spin Rotators

PHENIX

STAR

Pol. H⁻ Source

LINAC

200 MeV Polarimeter

BOOSTER

AGS

Helical Partial Siberian Snake

Strong AGS Snake

AGS pC Polarimeter
Polarized ^3He at RHIC

- ^3He's anomalous g-factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring10

10Bai, Courant \textit{et al.}, BNL-96726-2012-CP, 2012.
Polarized 3He at RHIC

- 3He’s anomalous g-factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring10

10Bai, Courant et al., BNL-96726-2012-CP, 2012.
Transfer Path Relaxation Studies

- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - “Best” case, avoiding depolarization
 - Real case, following EBIS feed-throughs

(Color scale in seconds)
Constraints on Path into EBIS
Constraints on Path into EBIS
Constraints on Path into EBIS
Test of Polarization Diffusion Measurement

\[\begin{pmatrix} \dot{P}_p(t) \\ \dot{P}_t(t) \end{pmatrix} = \begin{pmatrix} - \left(\frac{1}{\tau_p} + \frac{N_t}{N} \frac{1}{t_{\text{ex}}} \right) & \frac{N_t}{N} \frac{1}{t_{\text{ex}}} \\ \frac{N_p}{N} \frac{1}{t_{\text{ex}}} & - \left(\frac{1}{\tau_t} + \frac{N_p}{N} \frac{1}{t_{\text{ex}}} \right) \end{pmatrix} \begin{pmatrix} P_p(t) \\ P_t(t) \end{pmatrix} \]

• 5 variables describe system (initial pols, decays, transfer)
• Solution is sum of two exponentials
• Relate to 4 fit parameters of measured relaxation curve

\[P_p(t) = a_s e^{-t/\tau_s} + a_l e^{-t/\tau_l} \]
The Makeup of Matter

- Atoms consist of electrons around a nucleus
- Nuclei consist of protons and neutrons
- Nucleons consist of 3 quarks
 - Quarks get their mass from the Higgs Mechanism
 - Mass of u quark ~ 2 MeV, d quark ~ 5 MeV
 - Mass of proton (uud) is 938 MeV. *Wait, what?*

- In QCD, the nucleon is made of 3 valance quarks, a sea of virtual quark–anti-quark pairs, all bound by gluons
- Nearly all the mass is generated by flurry of activity from quarks and gluons jiggling at near c, and $q-\bar{q}$ pairs springing into and out of existence
The Makeup of Matter

- Atoms consist of electrons around a nucleus
- Nuclei consist of protons and neutrons
- Nucleons consist of 3 quarks
 - Quarks get their mass from the Higgs Mechanism
 - Mass of u quark ~ 2 MeV, d quark ~ 5 MeV
 - Mass of proton (uud) is 938 MeV. *Wait, what?*

- In QCD, the nucleon is made of 3 valance quarks, a sea of virtual quark–anti-quark pairs, all bound by gluons
- Nearly all the mass is generated by flurry of activity from quarks and gluons jiggling at near c, and q-\bar{q} pairs springing into and out of existence
The Makeup of Matter

- Atoms consist of electrons around a nucleus
- Nuclei consist of protons and neutrons
- Nucleons consist of 3 quarks
 - Quarks get their mass from the Higgs Mechanism
 - Mass of u quark ~ 2 MeV, d quark ~ 5 MeV
 - Mass of proton (uud) is 938 MeV. *Wait, what?*

- In QCD, the nucleon is made of 3 valance quarks, a sea of virtual quark–anti-quark pairs, all bound by gluons
- Nearly all the mass is generated by flurry of activity from quarks and gluons jiggling at near c, and $q-\bar{q}$ pairs springing into and out of existence
The Makeup of Matter

- Atoms consist of electrons around a nucleus
- Nuclei consist of protons and neutrons
- Nucleons consist of 3 quarks
 - Quarks get their mass from the Higgs Mechanism
 - Mass of u quark ~ 2 MeV, d quark ~ 5 MeV
 - Mass of proton (uud) is 938 MeV. Wait, what?

- In QCD, the nucleon is made of 3 valance quarks, a sea of virtual quark–anti-quark pairs, all bound by gluons
- Nearly all the mass is generated by flurry of activity from quarks and gluons jiggling at near c, and $q-\bar{q}$ pairs springing into and out of existence
Understanding the Strong Force

Electromagnetic Force (QED)

Particles of charge (+−) interact via mediating photons, which are neutral
- 1 vertex for radiation/absorption

Strong Force (QCD)

Particles of color charge (RGB) interact via mediating gluons, which carry color charge
- Vertex for gluon radiation
- 2 vertices for gluon self-coupling
Understanding the Strong Force

Electromagnetic Force (QED)

Particles of charge \((+/-)\) interact via mediating photons, which are neutral
- 1 vertex for radiation/absorption

Strong Force (QCD)

Particles of color charge (RGB) interact via mediating gluons, which carry color charge
- Vertex for gluon radiation
- 2 vertices for gluon self-coupling
Understanding the Strong Force

In electrodynamics, a bare negative charge begets particles and anti-particles which serve to “screen” the bare charge at a distance. A high energy probe with a very short distance scale penetrates the cloud, seeing larger electronic charge.
Understanding the Strong Force

In electrodynamics, a bare negative charge begets particles and anti-particles which serve to “screen” the bare charge at a distance. A high energy probe with a very short distance scale penetrates the cloud, seeing larger electronic charge.
Understanding the Strong Force

In chromodynamics, a bare red charge begets more red charge, serving to “anti-screen” at a distance, leading to “confinement”. A high energy probe with a short distance scale sees smaller charge, “asymptotic freedom.”
Understanding the Strong Force

In chromodynamics, a bare red charge begets more red charge, serving to “anti-screen” at a distance, leading to “confinement”. A high energy probe with a short distance scale sees smaller charge, “asymptotic freedom.”
Scattering Probes of Nuclear Structure

- We need a “microscope” to see inside the nucleus
 - But, you can’t see something if it’s smaller than the wavelength of light you are using
 - Need “light” with very small wavelength

- An electron scatters off a proton via a photon
 - An electron beam can provide a beam of “virtual photons”
 - The more 4-momentum exchanged (Q^2), the smaller the virtual photon, the higher resolution you can achieve
Scattering Probes of Nuclear Structure

• We need a “microscope” to see inside the nucleus
 • But, you can’t see something if it’s smaller than the wavelength of light you are using
 • Need “light” with very small wavelength

• An electron scatters off a proton via a photon
 • An electron beam can provide a beam of “virtual photons”
 • The more 4-momentum exchanged (Q^2), the smaller the virtual photon, the higher resolution you can achieve
Pushing the Frontier

- Once we have enough momentum transfer to see quarks, what’s next?
 - Kinematics determine what we are probing
 \[Q^2 = 4EE' \sin^2 (\theta/2), \quad x = Q^2/(2M(E - E')) \]
 - Bjorken x is “momentum fraction” of struck quark
- At high x, we see a quark with “asymptotic freedom”
- At low x, we see a quark bound by a mess of gluons
- The next Nuclear Physics machine will reach the extreme low x region
 - Move from a fixed nuclear target and electron probe beam (SLAC, JLab) to a nuclear beam colliding with an electron beam
Pushing the Frontier

• Once we have enough momentum transfer to see quarks, what’s next?
 • Kinematics determine what we are probing
 \[Q^2 = 4EE' \sin^2(\theta/2), \quad x = Q^2/(2M(E - E')) \]
 • Bjorken x is “momentum fraction” of struck quark
• At high x, we see a quark with “asymptotic freedom”
• At low x, we see a quark bound by a mess of gluons
• The next Nuclear Physics machine will reach the extreme low x region
 • Move from a fixed nuclear target and electron probe beam (SLAC, JLab) to a nuclear beam colliding with an electron beam
Pushing the Frontier

- Once we have enough momentum transfer to see quarks, what’s next?
 - Kinematics determine what we are probing
 \[Q^2 = 4EE' \sin^2 (\theta/2), \quad x = \frac{Q^2}{2M(E - E')} \]
 - Bjorken \(x \) is “momentum fraction” of struck quark
- At high \(x \), we see a quark with “asymptotic freedom”
- At low \(x \), we see a quark bound by a mess of gluons
- The next Nuclear Physics machine will reach the extreme low \(x \) region
 - Move from a fixed nuclear target and electron probe beam (SLAC, JLab) to a nuclear beam colliding with an electron beam
Electron Ion Collider (eRHIC)
Electron Ion Collider (eRHIC)

16 GeV polarized electrons and 250 GeV polarized protons
Electron Ion Collider (JLab EIC)
Electron Ion Collider (JLab EIC)

10-20 GeV polarized electrons and 100-250 GeV polarized protons
Thoughts on Probe Measurement Error

- Intense probe can cause over-estimation of polarization
 - Talbot: as much as 5% at $M=0\%$ and 1% at $M=10\%$

\[
M(r/r_0) = \frac{r/r_0 - 1}{r/r_0 + 1}, \quad \sigma_M(r/r_0) = \frac{2\sigma_{r/r_0}}{1 + (r/r_0)^2}
\]