Statistical Analysis of Data

Douglas W. Higinbotham (Jefferson Lab)
What's to know?

<table>
<thead>
<tr>
<th>Name</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>chi-squared distribution</td>
<td>$\sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$</td>
</tr>
</tbody>
</table>

Just fit until you get $\chi^2 / \nu = 1$ and your good? Right.... ?!

(Where ν is the degrees of freedom in the fit $N - j - 1$)

What could possibly go wrong?!

What if the weights (sigma’s) are underestimated or overestimated?

What if I have the wrong model?

What if the data aren’t normally distributed?

What if average reduced χ^2 is good, but one over-fits one area and under-fits another!!

(It is NOT as trivial and just getting a reduced $\chi^2 \sim 1$ does NOT mean you have a good result.)
Fermi’s Rejection of Dyson’s Work

- https://www.webofstories.com/people/freeman.dyson/94?o=SH
The Five Parameter Elephant

https://www.johndcook.com/blog/2011/06/21/how-to-fit-an-elephant/
GNUPLOT OVERFITTING CODE
Using 101,600 Iterations To Converge

gnuplot overfitting of xkcd Husband Data
modified from https://xkcd.com/605/
by
Douglas W. Higinbotham
#
set terminal wxt enhanced font "verdana,12" size 900,450
set nokey
set xtic rotate 90
set ytic 0,1,1
set border 3
set xtics nomirror
set ytics nomirror
set mulplot layout 1,2
set ylabel "Number of Husbands"

f(x)=f0+f1*x
f(x)=g0*exp(g1*x)
fit f(x) '1.dat' using 1:3 via f0,f1
fit g(x) '2.dat' using 1:3 via g0,g1

set arrow from 0,1 to 2,1 nohead dashtype 7 lc 'black'
set arrow from -2,1 to 2,1 nohead dashtype 7 lc 'black'
set xrange [-2:6]
set yrange [-0.5:2]
plot '1.dat' using 1:3:xtic(2) lt 7 lc 'black',f(x) lw 2 lc 'black'
unset arrow

set xrange [-2:6]
set arrow from -2,1 to 2,1 nohead dashtype 7 lc 'black'
set arrow from -2,0.5 to 2,1 nohead dashtype 7 lc 'black'
plot '2.dat' using 1:3:xtic(2) lt 7 lc 'black',g(x) lw 2 lc 'black'
unset multiplot
pause -1
Retrograde Motion of Mars As Seen From Earth
Phases & Elliptical Orbits

- At first, with orbits as perfect circles, Ptolemaic models were better at predicting the orbits of the planets than Copernican models.
- It was the phases of the Venus (Galileo 1610) along with the elliptical orbits of Kepler (1609) [fitting the “naked eye” data of Brahe (1574)] that proved to be the downfall of the Ptolemaic model.

Illustration by Galileo Galilei in *Sidereus Nuncius (Starry Messenger)* 1610.
Occam’s Razor

• William Occam (1287 – 1347)
• One can always explain failing explanations with an ad hoc hypothesis, thus in Science, simpler theories are preferable to more complex ones. (e.g. the Sun centered vs. Earth centered)
• Layman’s version of Occam’s Razor is “the simplest explanation is usually the correct one” (i.e. KISS)
• In statistical versions of Occam's Razor, one uses a rigorous formulation instead of a philosophical argument. In particular, one must provide a specific definition of simple:
 – F test, Akaike information criterion, Bayesian information criterion, etc.
 – In statistical modeling of data too simple is under-fitting and too complicated is over-fitting.
Bayesian Priors (The Star Wars Example)

- C3PO can calculate the odds of a pilot navigating an asteroid field (20,000:1)

\[P(\text{RateOfSuccess}|\text{Successes}) = \text{Beta}(\alpha, \beta) \]

- But Han Solo is one of the best pilots in the galaxy. (i.e. C3P0 ignored a Bayesian Prior)

\[\text{Beta}(\alpha_{\text{posterior}}, \beta_{\text{posterior}}) = \text{Beta}(\alpha_{\text{likelihood}} + \alpha_{\text{prior}}, \beta_{\text{likelihood}} + \beta_{\text{prior}}) \]

- So C3PO actually correctly predicts that average pilots will not successfully navigate the field while incorrectly predicting Han’s chances. (estimated as 75% in the article)

- Ignoring A Bayesian Prior Can Lead To Wrong Conclusions
Warning: Danger of Confirmation Bias

In psychology and cognitive science, confirmation bias is a tendency to search for or interpret information in a way that confirms one's preconceptions, leading to statistical errors.
“The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.” - George Box (1919 – 2013)

“An ever increasing amount of computational work is being relegated to computers, and often we almost blindly assume that the obtained results are correct.”

- Simon Širca & Martin Horvat
Some Wrong But Useful Models

• $F = ma$ … but what about the friction
• $pV = nRT$ … but what about Van der Waals
• $F = kx$ … but what about the elongation
• $y = a_1 + a_2x$ … but what about a_2x^2, a_3x^3, etc.
 – $\sin(\theta)$ for small $\theta \approx \theta$
 – $\cos(\theta)$ for small $\theta \approx 1$
 – $\tan(\theta)$ for small angles goes to zero.
 – $\tan(\theta)$ for large angle goes to infinity.
• And of course the spherical cows...
Muonic Hydrogen Data

- High precision results from Muonic Lamb shift data give a proton radius of 0.84 fm.
- This result contradicts many other extractions which have determined the proton radius to be ~0.88 fm.

\[E_{2p} - E_{2s} = 209.98 - 5.2262 \, r_p^2 + 0.0347 \, r_p^3 \, \text{meV} \]

NOTE: The radius in this formula is consistent with other extractions.
Electron Scattering Charge Radii from Nuclei

Fourier Transformation of Ideal Charge Distributions.

Example Plots Made By R. Evan McClellan (Jefferson Lab Postdoc)

Determining the Charge Radius of Carbon

See the L. Cardman’s paper for details of the carbon radius (2.46 fm) analysis.
Measurement Is Often A Goldilocks Problem

From Deep Space

Too Far

A Modern Telescope

From Orbit

Just Right

Ruler & Some Geometry

On The Planet

Too Close

Theodolite*
What is just right for the proton?!

- We use Plank’s constant one to relate energy to length in natural units:
 - \(Q^2 \text{ of } 1 \text{ GeV}^2 = 25.7 \text{ fm}^{-2} \).
- Radius of the proton is \(\sim 0.84 - 0.88 \text{ fm} \).
- Thus one can immediately guesstimate that with electron scattering one needs:
 - \(Q^2 < (1/0.88 \text{ fm})^2 < 1.2 \text{ fm}^{-2} \) to get the radius of the proton.
 - \(Q^2 > 1.2 \text{ fm}^{-2} \) to understand the details of the edge of the proton (e.g. a pion cloud, CQCBM, etc.)
 - \(Q^2 >> 1.2 \text{ fm}^{-2} \) to understand transition from hadronic to partonic (e.g. the bound light constitute quarks)

Guesstimation books by Larry Weinstein (ODU)
Charge Radius of the Proton

- Proton G_E has no measured diffractive minima and it is too light for the Fourier transformation to work in any kind of model independent way.

- Thus for the proton we make use of the theorem that as Q^2 goes to zero the charge radius is equal to the slope of G_E

\[G_E(Q^2) = 1 + \sum_{n \geq 1} \frac{(-1)^n}{(2n+1)!} \langle r^{2n} \rangle Q^{2n} \]

For small Q^2 (< 1 fm$^{-2}$), the higher order terms, $\sim Q^{2n}/(2n+1)!$, become less important.

\[r_p \equiv \sqrt{\langle r^2 \rangle} = \left(-6 \frac{dG_E(Q^2)}{dQ^2} \right|_{Q^2=0} \right)^{1/2} \]

i.e. Experimentalists are trying to determine the slope of G_E as Q^2 goes to zero.
A textbook statistics problem is to quantify when to stop adding terms to a fit of experimental data. One way to do this is with an F-distribution test.

\[F = \frac{\chi^2(j - 1) - \chi^2(j)}{\chi^2(j)} (N - j - 1) \]

where \(j \) is the order of the fit and \(N \) the number points being fit.

Quantifies a statement that adding a term doesn’t significantly improve the fit.

One is free to pick a different alpha, alpha=0.05 is just typical to prevent over-fitting.

(see James 2nd edition page 282, Bevington 3rd edition page 207, or Širca page 268)
Example of too many free parameters
“Models with low bias are usually more complex (e.g. higher-order regression polynomials), enabling them to represent the training set more accurately. In the process, however, they may also represent a large noise component in the training set, making their predictions less accurate - despite their added complexity. In contrast, models with higher bias tend to be relatively simple (low-order or even linear regression polynomials), but may produce lower variance predictions when applied beyond the training set.”

NOTE: We run ONE experiment, not the thousands of a Monte Carlo! (i.e. low bias at the price of high variance is bad)
Real World Example

\[f(Q^2) = n_0 G_E(Q^2) \approx n_0 \left(1 + \sum_{i=1}^{m} a_i Q^{2i}\right) \]

<table>
<thead>
<tr>
<th>N</th>
<th>j</th>
<th>χ^2</th>
<th>χ^2/ν</th>
<th>n_0</th>
<th>a_1</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2</td>
<td>13.71</td>
<td>0.623</td>
<td>1.002(2)</td>
<td>-0.119(4)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>13.71</td>
<td>0.652</td>
<td>1.002(5)</td>
<td>-0.120(20)</td>
<td>0.00(2)</td>
</tr>
</tbody>
</table>

F-test rejects fitting with the more complex $j=3$ ($j=m+1$) function, that does NOT mean $a_2 = 0$.
Minimum Chi2 Minimum = ZERO

Note: One can often find a minimum in reduced chi2.

Fit function $f(x) = f_0 + f_1x + f_2x^2 + f_3x^3 + f_3x^4$

WARNING: Chi2 tests will not save you from using an in-appropriate function!
F-Test Is Not An Acceptance Test

For a more complex example, F-Test will reject the j=7 fit, but you then need to examine the fits that weren’t rejected. This is not an acceptance test!

<table>
<thead>
<tr>
<th>N</th>
<th>j</th>
<th>χ^2</th>
<th>χ^2/ν</th>
<th>n_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>5</td>
<td>49.57</td>
<td>0.688</td>
<td>0.991(2)</td>
<td>-0.113(1)</td>
<td>0.88(1) $\cdot 10^{-2}$</td>
<td>-0.44(2) $\cdot 10^{-3}$</td>
<td>9.7(8) $\cdot 10^{-6}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>6</td>
<td>41.34</td>
<td>0.582</td>
<td>0.996(2)</td>
<td>-0.121(1)</td>
<td>1.25(1) $\cdot 10^{-2}$</td>
<td>-1.14(2) $\cdot 10^{-3}$</td>
<td>6.8(1) $\cdot 10^{-5}$</td>
<td>-1.62(7) $\cdot 10^{-6}$</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>7</td>
<td>41.32</td>
<td>0.590</td>
<td>0.995(3)</td>
<td>-0.119(1)</td>
<td>1.18(1) $\cdot 10^{-2}$</td>
<td>-0.93(2) $\cdot 10^{-3}$</td>
<td>3.9(1) $\cdot 10^{-5}$</td>
<td>0.12(6) $\cdot 10^{-6}$</td>
<td>-4.2(5) $\cdot 10^{-8}$</td>
</tr>
</tbody>
</table>

$$f(Q^2) = n_0 G_E(Q^2) \approx n_0 \left(1 + \sum_{i=1}^{m} a_i Q^{2i}\right)$$

I find it interesting to note that the a_1 term between $j=5$ and $j=6$ bounds the Muonic Lamb shift result (i.e. 0.84fm -> a_1 of -0.1176)

Note you can get 0.88 from this same data by simply going higher order; but it is must likely overfitting.

In fact, it is clear from our knowledge of G_E than none of these power series fits extrapolate correctly.
Padé Approximant & Continued Fractions

Pade’ Approximant

When it exists, the Padé’ approximant (N,M) of a Taylor series is unique.

\[f(x) = \frac{a_0 + a_1 x^1 + a_2 x^2 \ldots + a^M x^M}{1 + b_1 x^1 + b_2 x^2 \ldots + b^N x^N} \]

In our case we want \(f(x) = n_0 G_{E}(Q^2) \), so

\[f(x) = n_0 \frac{1 + a_1 Q_2 + a_2 Q^4 \ldots + a^{M*2} x^{M*2}}{1 + b_1 Q_2 + b_2 Q^4 \ldots + b^{N*2} x^{N*2}} \]

(Henri Padé ~ 1860)

Continued Fraction

\[f(Q^2) = \frac{c_1}{1 + \frac{c_2 Q^2}{1 + \frac{c_3 Q^2}{1 + \frac{c_4 Q^2}{1 + \ldots}}}} \]

(Ancient Greeks)

Further reading: **Extrapolation algorithms and Padé approximations: a historical survey**

R Programming Language

<table>
<thead>
<tr>
<th>Language Rank</th>
<th>Types</th>
<th>Spectrum Ranking 2015</th>
<th>Spectrum Ranking 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Java</td>
<td>🌐💻📱</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2. C</td>
<td>🌐💻📱</td>
<td>99.9</td>
<td>99.3</td>
</tr>
<tr>
<td>3. C++</td>
<td>🌐💻📱</td>
<td>99.4</td>
<td>95.5</td>
</tr>
<tr>
<td>4. Python</td>
<td>🌐💻📱</td>
<td>96.5</td>
<td>93.5</td>
</tr>
<tr>
<td>5. C#</td>
<td>🌐💻📱</td>
<td>91.3</td>
<td>92.4</td>
</tr>
<tr>
<td>6. R</td>
<td>🌐💻📱</td>
<td>84.8</td>
<td>84.8</td>
</tr>
<tr>
<td>7. PHP</td>
<td>🌐💻📱</td>
<td>84.5</td>
<td>84.5</td>
</tr>
<tr>
<td>8. JavaScript</td>
<td>🌐💻📱</td>
<td>83.0</td>
<td>78.9</td>
</tr>
<tr>
<td>9. Ruby</td>
<td>🌐💻📱</td>
<td>76.2</td>
<td>74.3</td>
</tr>
<tr>
<td>10. Matlab</td>
<td>🌐💻📱</td>
<td>72.4</td>
<td>72.8</td>
</tr>
</tbody>
</table>

IEEE Rankings are based mostly on CPU usage (i.e. big data)
Stepwise Regression of G_E from Carl & Keith Pohl et al.

Pohl et al.'s 0.84 fm radius would predict a slope of -0.1176
Residuals vs. Fitted Values

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

Am I fitting with a reasonable model to describe the data?
Normal Q-Q Plots

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

(also see http://data.library.virginia.edu/understanding-q-q-plots/)

Are the data normally distributed?
(a requirement for many of the other stat. tests to be valid!)
Residuals vs. Leverage

Examples taken from http://data.library.virginia.edu/diagnostic-plots/

Is a single data point dramatically influencing the fit?
Multivariate Errors

As per the particle data handbook, one should be using a co-variance matrix and calculating the probably content of the hyper-contour of the fit. Default setting of Minuit of “up” (often call $\Delta \chi^2$ is one.

Also note standard Errors often underestimate true uncertainties. (manual of gnuplot fitting has an explicate warning about this)

The Interpretation of Errors in Minuit (2004 by James)
seal.cern.ch/documents/minuit/mnerror.pdf

In ROOT: **SetDefaultErrorDef(X.X)**

Default is 1 and doesn’t change unless you change it!
2017 Review of Particle Physics.
C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

p CHARGE RADIUS

This is the rms electric charge radius, \(\sqrt{\langle r_E^2 \rangle} \).

See below for the background. There are in fact three kinds of measurements of the proton radius: with atomic hydrogen, with electron scattering off of hydrogen, and with muonic hydrogen. The earlier face-off seemed to be between the two electronic methods and muonic hydrogen. But a purely statistical reanalysis of electron scattering data by HIGINbotham 2016 finds consistency with muonic hydrogen---and now it "is the atomic hydrogen results that are the outliers."

Most measurements of the radius of the proton involve electron-proton interactions, and most of the more recent values agree with one another. The most precise of these is \(r_p = 0.879(8) \) fm (BERNAUER 2010). The CODATA 14 value (MOHR 2016), obtained from the electronic results, is 0.8751(61). Compared to this CODATA value, however, a measurement using muonic hydrogen finds \(r_p = 0.84087(39) \) fm (ANTOIGNINI 2013), which is 16 times more precise but differs by 5.6 standard deviations (using the CODATA 14 error).

Since POHL 2010 (the first \(\mu p \) result), there has been a lot of discussion about the disagreement, especially concerning the modeling of muonic hydrogen. Here is an incomplete list of papers: DERUJULA 2010, CLOET 2011, DISTLER 2011, DERUJULA 2011, AARRINGTON 2011, BERNAUER 2011, HILL 2011, LORENZ 2014, KARSHENBOIM 2014A, and PESET 2015.

Until the difference between the \(ep \) and \(\mu p \) values is understood, it does not make sense to average the values together. For the present, we give both values. It is up to workers in this field to solve this puzzle.

http://pdglive.lbl.gov/DataBlock.action?node=S016CR&init=0
Example Least Squares Fitting

using the 1963 data of L. Hand et al.

- Excel
- Gnuplot
- Python
- R

https://jeffersonlab.github.io/Example-Regression-Codes/
Believe Your Results & Backup Your Codes!!

• Particle Data Handbook – Statistics Section
• The Interpretation of Errors – Fredrick James
• Data Analysis Textbooks
 – Data Reduction and Error Analysis – Philip Bevington
 – Statistical Methods in Experimental Physics – Fredrick James
 – Computation Methods for the Physical Science – Simon Širca
 – Probability of Physics – Simon Širca
• R Programming Language
 – https://www.r-project.org/
• Estimation
 – Street-Fighting Mathematics (open source) – Sanjoy Mahajan
 – Guesstimation – Larry Weinstein
• **Use Tools Such As Git & Github to back-up your work!**