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Executive Summary

We propose a measurement of the asymmetry, Ae
+e−
d , between unpolarized positron and

electron beams scattering off a liquid deuterium target in the deep inelastic scattering (DIS) re-
gion. We will use the secondary positron and electron beams produced using the PEPPo process,
incident on a 40-cm long liquid deuterium target. Beam polarization is not required, though
knowledge of the beam polarization is desired to form additional asymmetry observables. The
scattered positrons or electrons will be detected by the SoLID spectrometer in Hall A in its
PVDIS configuration. The SoLID magnet polarity will be flipped to match the charge of the
beam.

We request 104 PAC days of beam time that includes 96 days of production with 3 µA
beams at 11 GeV and 6.6 GeV, each split between e+ and e− runs; 2 days for pass changes;
and 6 days for Compton tune, general commissioning, and reversing the SoLID magnet polarity.
Time needed to setup and commission the secondary positron or electron beam is not included
in this request. The asymmetry Ae

+e−
d will be measured over a wide (x,Q2) range and provide

precision data on the nucleon structure function F γZ3 . From the asymmetries we will also attempt
to extract the electron-quark neutral-current effective couplings, 2C3u − C3d, to a precision of
approximately ±0.060. Here, C3q ≡ −2ceAc

q
A, with ce(q)A the axial weak charge of the electron

(quark). To extract C3q, higher-order QED contributions to Ae
+e−
d must be calculated precisely

as their contribution is larger than the electroweak contribution. Similarly, differences in the
beam energy and luminosity between e+ and e− runs will cause a sizable asymmetry and must
be understood from data because it is so far unlikely that these differences can be controlled to
a sufficiently precise level. We present a method of using a multi-parameter fit to separate C3q

from these experimental effects and further determination of F γZ3 .
The proposed measurement will help to advance our studies of electroweak physics and the

nucleon structure into a terrain that was scarcely explored previously. There has only been one di-
rect measurement on the muonic counterpart of C3q, carried out at CERN in 1980, which yielded
2Cµq3u − C

µq
3d = 1.57 ± 0.38. Even with the assumption of lepton universality, the knowledge

gained from the CERN measurement is limited by its statistical precision. Therefore, the pro-
posed measurement will provide the first direct access to C3q for the electron-quark interaction
and possibly the most precise measurement among all charged leptons. Results on the scarcely
measured structure function F γZ3 for the nucleon will add knowledge to our understanding of the
nucleon structure.
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1 Introduction

Our knowledge on the Standard Model (SM) of Particle Physics reached a concluding milestone
in 2012, brought by experimental observations of the Higgs boson at the LHC [1][2]. Since
then, the research of both medium- and high-energy physics along this direction has focused
primarily on high-precision tests of the Standard Model and searching for Beyond-the-Standard-
Model (BSM) physics. The fundamental questions include: Are leptons and quarks made of even
smaller particles, or are they truly point-like elementary entities that exist down to the Planck
scale? Are there new interactions at higher energy scales than what we have reached? At what
energy scale and with what symmetry can we unify strong and electroweak interactions? How do
we explain neutrino masses, and can we reduce the number of parameters of the Standard Model?
Most recently, experimental results on the b quark decay [3] and the muon g−2 measurement [4]
added exciting fresh information to the field. Of course, one might argue that some of the biggest
questions are outside the scope of the SM: dark matter and dark energy still pose the greatest
challenge to our understanding of gravity and the universe as a whole. These questions and
challenges, along with the desire to fully understand the nucleon and the strong interaction, form
in part the frontier of medium-energy nuclear physics research in the US and worldwide.

The Continuous Electron Beam Accelerator Facility (CEBAF), hosted at Jefferson Lab (JLab),
has provided an essential tool in our pursuit of understanding the strong interaction and the nu-
cleon and nuclear structure since the late 1990’s. In the last decade, studies of electroweak (EW)
physics have emerged as a new and pioneering direction for JLab’s research program. Among
these, the Qweak experiment provided the latest data on the proton weak charge and improved
our knowledge on the EW neutral-current (NC) axial-vector (AV ) C1q couplings [5]. The 6 GeV
PVDIS (Parity Violating Deep Inelastic Scattering) experiment similarly improved our knowl-
edge on the vector-axial (V A) C2q couplings [6, 7]. At this point, one begins to ask the question:
can we measure other observables that can help test the Standard Model, even though such mea-
surements have become increasingly challenging in the most recent decade?

In this document, we propose a measurement of the cross section asymmetry between positron
and electron deep inelastic scattering (DIS) off a deuterium target. We plan to use secondary
positron and electron beams produced by the PEPPo (Polarized Electrons for Polarized Positrons)
method [8]. The scattered DIS events will be detected by the SoLID spectrometer in its PVDIS
configuration [9], with its magnet polarity reversed to match the charge of the beam. In order
to access the EW contribution to the asymmetry, we need to calculate electromagnetic higher-
order effects and subtract them from data. To do so, we have learned some of the methods and
tools used by the high-energy physics community. From the measured asymmetries, we will ex-
tract the scarcely measured nucleon F γZ3 structure function, and possibly provide the first direct
determination of the axial-axial (AA) electroweak NC coupling combination, 2C3u − C3d, for
electron-quark interactions.

7



2 The Physics Case of Electroweak Neutral Current Couplings

2.1 Four-Fermion Interactions and Effective Couplings

At medium energy scales much below the W and Z bosons masses, the weak NC interaction of
electron DIS off a nucleon or nuclear target can be written using the effective Lagrangian [10]:

Le
−q
NC =

GF√
2

∑
q

[C1q ēγ
µγ5eq̄γµq + C2q ēγ

µeq̄γµγ5q + C3q ēγ
µγ5eq̄γµγ5q] , (1)

where GF = 1.166×10−5 (GeV)−2 is the Fermi constant. The terms ēγµγ5eq̄γµq, ēγµeq̄γµγ5q
and ēγµγ5eq̄γµγ5q are often referred to as the AV , V A, and AA four-fermion contact inter-
actions, respectively, which are low-energy approximations of the NC weak interaction of the
Standard Model. Each of the terms is multiplied by the corresponding effective electron-quark
(eq) coupling. At the one-boson-exchange level (tree level): C1q = 2ceAc

q
V , C2q = 2ceV c

q
A and

C3q = −2ceAc
q
A, with ce(q)V,A the lepton (quark) neutral-current vector (V ) and axial (A) couplings

to the Z0. The SM predictions for u and d quarks relate their effective NC couplings to the weak
mixing angle θW . At the tree level:

C1u = −1

2
+

4

3
sin2 θW , C2u = −1

2
+ 2 sin2 θW , C3u =

1

2
, (2)

C1d =
1

2
− 2

3
sin2 θW , C2d =

1

2
− 2 sin2 θW , C3d = −1

2
. (3)

One main focus of low or medium-energy experiments is to determine these effective couplings
to a high precision, as any deviation from their SM predictions could indicate a modification
of the Lagrangian, i.e., a hint of the existence of BSM physics. The current knowledge of C1q

and C2q is shown in Fig. 1 [11], along with expected results from the planned P2 experiment at
Mainz [12] on C1q and the planned SoLID project [9] at JLab on C2q.

In recent years, a different notation – geqAV , geqV A and geqAA – was introduced [17] and has been
adopted by PDG (Particle Data Group) since 2017. The difference from the C1q,2q,3q is that
the new notation (the g’s) absorbs some higher-order corrections. The new notation is also no
longer defined as the product of ceV,A and cqV,A and thus can absorb effects from BSM physics.
More importantly, the extracted values of geqAV,V A,AA should be independent of the processes in
which they are measured. This allows a direct comparison of the weak NC couplings between
experiments. We will continue using theC1q,2q,3q notation in this document, and will use the new
geqAV,V A,AA notation once data are collected and the process of extracting the couplings begins.

2.2 Knowledge of Muonic C3q at CERN

While the C1q,2q couplings are parity-violating, the AA interaction or the C3q coupling can only
be accessed by comparing lepton with anti-lepton scattering. In fact, direct measurements on the
electron-quark C3q do not yet exist. The only related measurement is a CERN experiment [18]
that extracted the muonic counterpart of C3q by comparing (polarized) µ− vs. µ+ DIS cross
sections off a carbon target. The asymmetry measured was

B+ ≡
σ+(−|λ|)− σ−(+|λ|)
σ+(−|λ|) + σ−(+|λ|)

= − 3GFQ
2

10
√

2πα
Y (y)[(2C3u − C3d) + |λ|(2C2u − C2d)], (4)
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Figure 1: From Ref. [11]: Current and expected knowledge of the couplings C1q or geqAV (left)
and C2q or geqV A (right). In the left panel, the Atomic Parity Violation (“APV 2019”) results
shown utilized the latest theory calculations of [13] and the “eDIS” band is a combination of the
SLAC E122 [14, 15] and the JLab PVDIS [6, 7] experiments. Expected results from the future
P2 @ Mainz [12] and SoLID @ JLab [9, 16] are also shown, centered at the SM values.

where the superscript in σ± indicates the charge of the muon beam, |λ| is the magnitude of
the beam polarization, the sign in ±|λ| represents the helicity of the incident beam, α is the
fine structure constant, GF is the Fermi constant, Q2 ≡ −q2 with q the 4-momentum transfer,
y ≡ ν/E with ν the energy transfer and E the incident beam energy, and

Y (y) ≡ 1− (1− y)2

1 + (1− y)2
. (5)

The CERN results using two beam energies E = 200 GeV (|λ| = 0.81) and 120 GeV (|λ| =
0.66) were

2C3u − C3d + 0.81(2C2u − C2d) = 1.45± 0.41, (6)

2C3u − C3d + 0.66(2C2u − C2d) = 1.70± 0.79, (7)

where the values α = 1/129 and 1/130 were used for the two energies, respectively, evaluated
at the averaged Q2 value of the corresponding beam energy. These results can be compared
to the SM tree level predictions of 1.42 and 1.44, respectively. Note that these results were
previously summarized in [19] but the calculations were updated in [20]. Using the SM values
for 2C2u − C2d, we find the constraint

[2C3u − C3d]
µq = 1.57± 0.38, (8)
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where we assumed that the (smaller) systematic error of the 200 GeV data was common to
both beam energies. This is in good agreement with the SM value (+1.5). Assuming lepton
universality, one may compare the precision of the CERN results on C3q with those shown in
Fig. 1. However, we note that there is so far no direct data on C3q for electron-quark interactions.
The proposed measurement will change this situation.

2.3 Asymmetries in e+ vs. e− Deep Inelastic Scattering

For the difference between e+ and e− scattering, we can define the following asymmetries:

Ae
+e−
RL ≡

σe
+

R − σe
−
L

σe
+

R + σe
−
L

, Ae
+e−
LR ≡

σe
+

L − σe
−
R

σe
+

L + σe
−
R

; Ae
+e−
LL ≡

σe
+

L − σe
−
L

σe
+

L + σe
−
L

, Ae
+e−
RR ≡

σe
+

R − σe
−
R

σe
+

R + σe
−
R

,

where the subscripts R,L represent the helicity of the incident beam h = +1,−1. Additionally,
the helicity-independent (unpolarized) lepton-charge asymmetry is defined as

Ae
+e− ≡

σe
+

h=0 − σe
−
h=0

σe
+

h=0 + σe
−
h=0

. (9)

Detailed expressions of these asymmetries for DIS off a hydrogen (proton) or a deuterium target
are summarized in Appendix A and parton-model derivations given in Appendix D. Here we
focus on Ae

+e−
d , the asymmetry between unpolarized positron and electron beams scattering off

the deuteron since it provides a direct access to the combination 2C3u −C3d. The parton-model
expression for the asymmetry is:

Ae
+e−
d = −3GFQ

2

2
√

2πα
Y (y)RV

(2C3u − C3d)

5 + 4RC +RS
, (10)

where

RV (x) ≡ uV + dV
u+ + d+

, RC(x) ≡ 2c+

u+ + d+
, RS(x) ≡ 2s+

u+ + d+
, (11)

are defined by the parton distribution functions (PDF) q+ ≡ q + q̄ and qV ≡ q − q̄. The
assumption s = s̄ and c = c̄ were used. Quantitatively, one can write

Ae
+e−
d = −(108 ppm/GeV2)Q2Y (y)

RV

1 + 4
5RC + 1

5RS
(2C3u − C3d) . (12)

The full expressions using structure functions are also given in Appendix A. For the unpo-
larized asymmetry and ignoring γZ contribution to the denominator, we have:

Ae
+e−
d,full =

GFQ
2

2
√

2πα

geA
2
Y3
F γZ3

F γ1
, (13)

where

Y3 =

[
r2

1 +Rγ

]
1− (1− y)2

1 + (1− y)2 − y2
[
1− r2

1+Rγ

]
− 2M2x2y

Q2

. (14)
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with Rγ ≡ σγL/σ
γ
T and r2 = 1 + Q2

ν2
. The structure functions, F γ,γZ1,3 , can be written in terms of

PDFs at the parton model level:

F γ1 (x,Q2) =
1

2

∑
Q2
q

[
q(x,Q2) + q̄(x,Q2)

]
, (15)

F γZ1 (x,Q2) =
∑

Qqg
q
V

[
q(x,Q2) + q̄(x,Q2)

]
, (16)

F γZ3 (x,Q2) = 2
∑

Qqg
q
A

[
q(x,Q2)− q̄(x,Q2)

]
, (17)

whereQq denotes the quark’s electric charge and the summation is over the quark flavors u, d, s · · · .
Hence measurement of Ae

+e−
d provides a direct measurement of the structure function F γZ3 if

world data on F γ1 are used as inputs.

2.4 The AA Effective Coupling and BSM Physics Search

While precision data on the C1q,2q provided constraints on the energy (or “mass”) limit below
which BSM physics is unlikely to occur, it is important to measure all axial and vector combi-
nations of the EW NC couplings. The strong coupling mass limit on BSM physics that can be
imposed by a C3q measurement with uncertainty ∆(2C3u − C3d) in the optimal case 2, is:

Λ = v

√
8
√

5π

∆(2C3u − C3d)
, (18)

where v =
√

1/(
√

2GF ) = 246.22 GeV is the Higgs vacuum expectation value, and the
√

5 is a
normalization factor taking into account the coefficients of the C3u,3d in the denominator for the
optimal scenario.

Any model predicting a significant effect in the C3q (AA), while leaving the C1q,2q (AV and
V A) unaltered, is presumably contrived or tuned, though one could argue that our universe is
very fine-tuned to start with. We emphasize here that the C3q are couplings independent of the
C1q,2q and pose complementary constraints on BSM physics. Conversely, if new physics is seen
in the C1q or C2q, it would be of paramount importance to measure the C3q, as well.

2.5 The CERN Experiment NA004

In this paragraph we give a brief description of the CERN experiment NA004 carried out by the
BCDMS Collaboration. The experiment utilized the polarized µ± beams on a 40-meter 3 long
12C target. Two beam energies were used: 200 and 120 GeV. The beam energy was measured
to ±0.5% and the energy calibration for the difference of µ+ vs. µ− was kept at 6 × 10−4

and 13 × 10−4 level for 200 and 120 GeV, respectively. Beam charge was reversed twice per
data taking period of 12 days with intensity at about 2 × 107 muons per spill. The µ± events
were taken at the same intensity such that systematic effects (intensity, deadtime, etc) largely

2If certain BSM physics modifies both C3u and C3d but in the same direction with δC3u = 1
2
δC3d, then it cannot

be accessed by the proposed measurement. We present here the optimal scenario where the sensitivity to BSM physics
is maximized. See [11] for details.

3This is not a typo, in case the reader wonders...
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cancel. The polarity of the spectrometer was reversed between each µ+ and µ− data taking.
The spectrometer was running at the saturated state and the absolute field was kept at 2 × 10−4

precision after each polarity change. A total of five, two, and one 12-day data taking periods
were spent at 200 GeV with Q2 > 30 (GeV)2, 120 GeV with Q2 > 20 (GeV)2, and 120 GeV
with Q2 > 12 (GeV)2, respectively. In extracting the EW contributions to the asymmetry, the
dependence of the measured asymmetries on various kinematics variables – x, y, Q2 and θ –
were studied and compared with the expectation from experimental systematic effects such as
different µ+ and µ− beam energies, and no visible sign of such effects was found. Higher order
QED and EW radiative corrections were calculated and were found to be comparable in size to
the EW contribution to the asymmetry. These corrections were applied, and the final extracted
asymmetries were fitted vs. Y (y)Q2 and the fitted slope provided the final results on 2C3u−C3d.

We note that many of the experimental strategies of the CERN NA004 experiment can be
applied to the proposed measurement, although there will be larger radiative corrections (relative
to the EW contribution) at JLab beam energies. On the other hand, while larger Q2 values mean
smaller radiative corrections, the higher Q2 implies that purely weak effects (the Z terms) may
no longer be neglected, and observables are sensitive to a combination of couplings that can be
separated only by fitting the data globally. In addition, the Y -weighting of C3q inAe

+e− (similar
to C2q in PVDIS) implies it is best accessed in a fixed-target (high y) setting. These show part
of the complementarity between medium energy (direct access to a specific combination of the
couplings) and high energy (access to a combination of many couplings) experiments is highly
desired. For the specific cases of C2q and C3q, JLab is the best place to directly measure these
couplings precisely.

3 The Proposed Experiment

In this section we will first summarize the present initiative towards developing positron beams
at CEBAF. Then we will discuss beamline requirements for the positron beam in Hall A, the
liquid deuterium target and the SoLID spectrometer. We will provide simulated rates for the
proposed measurement, the expected electroweak contribution to the asymmetries, and the pro-
jected statistical uncertainty. Then we will discuss specific aspects of the measurement such as
tracking efficiency, particle identification and background corrections. We leave discussions of
all systematic effects to the next section.

3.1 The Positron Source

The production of positron beams from unpolarized electron beams is a commonly known tech-
nique used at numerous accelerator facilities. For the physics program at CEBAF, a polarized
beam is desired to study a wide range of topics and the technique to produce polarized positron
beams is much more involved. As of today, HERA has been the only facility to run polar-
ized positron beams, using the self-polarization of multi-GeV positrons via the Sokolov-Ternov
effect [21], but such energy is outside the range of the CEBAF injector and accommodating
such high energy e+ source would be costly. For the proposed measurement we consider a
process in which an initially polarized electron beam of low energy is incident on a high-Z
target, which produces polarized positrons through Bremsstrahlung radiation followed by pair
production. The new PEPPo experiment [8] using a 8.2-MeV/c electron beam with an 85.2%
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Figure 2: Energy dependence of the positron efficiency production (left) and polarization (right)
simulated with a 123 MeV and 100% polarized electron beam [8]. Points correspond to the selec-
tion of produced positrons within an energy spread of 1 MeV and a constant angular acceptance
of 10◦ (blue) or a 10 mm·mrad emittance (red).

polarization demonstrated the polarization transfer from primary electrons to secondary parti-
cles (electrons and positrons) can reach 100%. The PEPPo technique is ideally suited for the
production of both polarized and unpolarized positron beams at CEBAF.

The polarization of such positron beam depends on the required beam intensity. The trade-
off between polarization and intensity capabilities is illustrated in Fig. 2 showing the simulated
performance of a positron source using a 123 MeV and 100% polarized primary electron beam.
A software collimator combining a 1 MeV energy acceptance and alternatively a 10◦ angular
acceptance or a 10 mm·mrad emittance mimics the positron collection efficiency, with the latter
configuration corresponding to the measured emittance acceptance of CEBAF [22]. Considering
a 1 mA initial electron beam, the simulated positron beam intensity decreases from 5 µA down
to 100 nA in the 10-60 MeV positron energy range, while the polarization increases from 10%
up to 75%.

Several designs for injecting the positron beam at CEBAF were discussed in [8]. For each
design, the same technique can be used to produce a secondary electron beam with similar char-
acteristics as the positron beam. In one of the approaches, it was estimated that a 3 µA positron
beam can be produced comfortably [22] when polarization is not required, which is the value we
choose to use in this proposal.

3.2 Acceleration of Positrons in CEBAF

The operation of CEBAF with positron beams was extensively discussed in the LOI12-18-
004 [23] and we summarize the main requirements and features of the positron beam here.
Accelerator R&D is on-going to develop the source concept with realistic parameters and more
results are expected in Fall of 2022.

In order for positrons to transit CEBAF in the usual electron path, all magnet polarities
need be inverted. The dipole powering network uses common power supplies feeding strings
of magnets in series. The magnets were designed to be slightly too high in field strength, and
electronic loads (shunts) are installed to shunt a controlled amount of the current. All machine
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protection provisions for the dipole magnets remain functional with the main power supply leads
inverted. The shunt hardware is unipolar, and inverting the shunt leads in coordination with the
power supply leads leaves the dipole powering network fully functional and protected. These
many power supplies and shunt connections require reversing switches (see Appendix B) to be
installed with carefully designed features to ensure that all polarity changes are appropriately
coordinated.

The injection chicane properties (aperture and dispersion) control the CEBAF beam accep-
tance and are normally configured for low emittance and low momentum spread beams. But the
principal limiting aperture of the chicane is very localized and can be readily modified to increase
its acceptance for the anticipated positron beam. Once the beam passes the injector chicane and
enters CEBAF, we focus on beam optical parameters in each pass of acceleration and up to the
experimental halls, see Fig. 3. The beam properties are affected by two factors that cause dif-
ferences between e+ and e− beams: the acceleration damping within the CEBAF accelerating
sections, and the synchrotron radiation in the recirculating arcs. The dynamics of the momentum
spread of electron beams is dominated by radiation effects, while despite a much larger initial
momentum spread, positron beams essentially benefit from acceleration damping which results
in the same momentum spread as electron beams. The large positron beam emittance at the in-
jector entrance is strongly reduced by acceleration effects, which results in a final emittance 4-5
times larger than the one of electron beams. This difference in the secondary e+ vs. e− beams
characteristics should be taken into account when designing high-precision experiments.
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Figure 3: Comparison of simulated electron (left) and positron (right) beam properties [24].
The blue arrow indicates the prominence of acceleration damping effects, and the orange one
corresponds to the dominance of the effects of synchrotron radiation.
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3.3 Beam Polarimetry

While beam polarization is not required for the proposed measurement, it is desirable to know the
beam polarization |λ| to about 10% relative precision to cross-check the polarization-dependent
asymmetry, Ae

+e−
LR,RL,LL,RR, that can be extracted from data. The contribution from beam polar-

ization to the RR and LL (LR and RL) asymmetries is proportional to |λ|C1q (|λ|C2q), and is
smaller than the contribution from C3q.

Two of the three existing polarimetry techniques can be used for positrons with minimal
modification: the first is the Mott polarimetry at the source which, in principle, will work for
positrons up to 6 MeV of energy. The other is the Compton polarimetry in Hall A which, in
principle, should also work without modification for positrons. We estimate that with the slightly
larger intrinsic size of the positron beam, and assuming a beam current of 3 µA and a Compton
laser power of 2 kW, an absolute ±2% measurement on the beam polarization can be achieved
within an hour. Furthermore, Compton measurements can be performed non-invasively and
provide continuous monitoring of the beam polarization.

3.4 Positron Beam in Hall A and Beam Monitoring System

All beamline magnets (prior to the beam entering Hall A) can in principle work for the positron
beam if the magnet polarities are reversed. Hardware upgrades will be needed such that polar-
ity reversal can be done quickly and consistently. Following the magnets, the beamline in Hall
A consists of a Compton polarimeter, two Beam Current Monitors (BCM) between which an
Unser monitor is located for absolute beam current measurement, a fast raster, a Moller beam
polarimeter, and a number of Beam Position Monitors (BPM). All beamline monitoring compo-
nents should in principle work for both positron and electron beams with minimal modifications.
For example, stripline BPMs work for both positron and electron beams, though with each charge
reversal the stripline likely needs to be physically reversed since the power flow is directional.
The stripline BPM resolution at 1 µA current is 3 µm.

Beam energy in Hall A is measured by the “ARC” method, that is, the energy is determined
using the beam bending angle and the

∫
~B · d~l value of the last dipole(s) in the Hall A beamline,

just before the beam enters the hall. The beam energy can be determined to a relative 5 × 10−4

level using this method and is independent of the beam charge (provided the dipole magnet
polarity is reversed). It is expected that a similar precision can be achieved for positron beams.
In addition, one can use the BPM and magnet information in the ARC recorded in the EPICS data
stream to correct for slight deviations of the beam from the central trajectory. This technique [25]
was first used for the hypernuclei program in Hall C and can monitor the beam energy at the 10−5

level.
Beam current or intensity in the hall is measured by BCMs. The BCM is routinely calibrated

with the Unser. However, at low beam currents (µA level) the Unser is noisy and Faraday cup
measurements – invasive to Halls B, C, and D – are required to fully calibrate the BCM. We plan
to carry out e+ and e− runs at about the same beam current to limit experimental systematic
effects, such as DAQ deadtime and target density fluctuation. The BCM will be used to measure
the beam intensity, though it is clear that one cannot control the difference in the beam intensity
between e+ and e− runs to a high enough precision that is much smaller than the expected
statistical uncertainty of the measured asymmetry.
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Beam intensity and energy drifts with magnitudes smaller than what can be measured will
contribute to systematic effects that cannot be directly corrected, see sections 4.2 and 4.3.

3.5 The Target and the Raster System

We plan to use a 40-cm long cryogenic liquid deuterium target, i.e. the same as for the SoLID
PVDIS measurement [16]. Cryotargets are routinely used at JLab, with each cell typically of
a cylindrical shape 1.3 inch in radius. The electron beam passes through an entrance “endcap”
along the symmetrical axis of the cylinder, and scattered particle pass through the side walls or
the exit “endcap”. The entrance and exit “endcaps” as well as the side wall of the cryo-cells
are made of 5-mil thick aluminum, which should be taken into account when calculating energy
loss of particles. Then aluminum endcaps also contribute to background events, to be discussed
in section 3.9. In addition to cryo targets, the target ladder includes optics carbon targets and a
“dummy” target made of two pieces of aluminum identical to the endcaps of the cryo target, so
that event contribution from the endcaps can be measured.

The slightly larger intrinsic size of the positron beam should not cause any problem on the
target because the beam will be rastered to a minimum size of 2×2 mm and is still much smaller
than the transverse size of the target cell. Based on experience, the density fluctuation of the
liquid deuterium target due to beam heating (often referred to as “target boiling effect” though
the liquid does not undergo a phase transition in reality) can have two effects on experiments:
first is a reduction in density that can affect the precision of typical cross section measurements;
second is an increase in the width of helicity pair-wise asymmetry above that expected from the
counting statistics, which affects typical parity-violation measurements. We note that the second
effect is irrelevant to the proposed measurement. The density reduction is found to be at the 10−3

level for a 1 to 5-µA beam [26] and a 2 × 2 mm2 square raster, and depends on the raster size.
We will control the raster size and other target conditions (fan speed, etc) to ensure any density
effect cancels between e+ and e− runs to the first order. Any possible effect due to target density
change can be treated as part of the luminosity difference, see section 4.2.

3.6 The SoLID Spectrometer and its Field

The Solenoid Large Intensity Device, or SoLID, is a large-acceptance device planned for Hall A.
It has two basic configurations: the semi-inclusive DIS (SIDIS) and the PVDIS configuration.
We plan to use the PVDIS configuration for the proposed measurement, see Fig. 4. This con-
figuration will be used for the PVDIS measurement at a luminosity up to 1039 cm−2s−1 (50 µA
e− beam on a 40-cm long liquid deuterium target). For PVDIS running at the 1039 cm−2s−1

luminosity, a set of baffles (slitted shielding) will be used to reduce the background by 1-2 or-
ders of magnitude, but reduce the acceptance of DIS electrons by approximately a factor three.
Due to concerns of high background and related systematic effects (of both DIS and background
events), we will be using the baffles for the proposed measurement.

To use the PVDIS setup for the e+ beam run, the polarity of the solenoid magnet will be
reversed such that the acceptance of the scattered positrons can be kept as close to that of the
electrons as possible. The solenoid field for the positive polarity (for e+ detection) has been
calculated and it was found that the difference from the negative polarity (for e− detection) is at
no more than the 10−5 level and only for about 10 out of ten million points calculated. This is

16



Figure 4: The planned Solenoid Large Intensity Device (SoLID) in its PVDIS configuration. The
electron (or positron) beam enters from the left and incident on a 40-cm long liquid target. Scat-
tered particles are detected by gas electron multiplication chambers, a gas cherenkov detector,
and an electromagnetic calorimeter. A set of “baffles” (slitted shielding) will be used to reduce
backgrounds.

in fact consistent with zero within the precision OPERA [27] can provide. When estimating sys-
tematic uncertainties, we will use 10−5 as the upper limit of the scattered particle’s momentum
difference between e+ and e− runs. Additionally, we present in Appendix C a high-precision
field-mapping and feedback design, which is based on approaches used for the Fermilab Muon
g − 2 Experiment, that can potentially reach a ∆B/B = 10−6 field reproducibility and sta-
bility, making the effect of the SoLID magnetic field a negligible uncertainty for the proposed
measurement.

3.7 Expected Rates and Electroweak Asymmetries

The expected DIS rates using SoLID PVDIS configuration with the baffles, a 40-cm long liquid
deuterium target, and a 3 µA 11 GeV beam are shown in Fig. 5. The size of the electroweak
component of the asymmetry Ae

+e−
d is calculated using Eq. (12) and both MMHT2014 [28]

(NLO120 grid) and CT18 [29] (CT18NLO grid) PDFs. The average of Ae
+e−
d values using the

two PDFs was taken as the central value, see Fig. 6. The expected statistical uncertainty of
measured asymmetry with 80 PAC days of 11 GeV 3 µA beam data taking (split between e+

and e− beams) is shown in Fig. 7. Studies of the asymmetry value using the exact expression
(Appendix A) and structure functions is underway but it does not alter significantly the size of
the asymmetry (and more importantly the rates and statistical uncertainty).
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(colored box), the two values are the uncertainties calculated from MMHT2014 eigenvectors
(68% C.L., upper left) and CT18 eigenvectors (90% C.L., lower right). The difference between
the two PDF sets are consistent with the uncertainties and are not shown.

Additionally, the uncertainty in the asymmetry calculation due to PDF sets were evaluated
using the MMHT2014 (68% C.L.) eigenvectors and the CT18 (90% C.L.) eigenvectors. The
relative sizes of these uncertainties are completely dominated by RV and thus has a strong x
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dependence, see Fig. 8. The differences between the asymmetry values calculated using the two
PDF sets are consistent with these uncertainties and are not shown. In kinematic bins where the
statistical precision is small, the PDF uncertainty becomes comparable to the statistical uncer-
tainty.

3.8 Tracking and Data Acquisition

Particle detection in SoLID is accomplished by a Gas Electron Multiplication (GEM) detector
for tracking, and a Light Gas Cherenkov (LGC) and an Electromagnetic Calorimeter (ECal)
for particle identification (PID). For PVDIS configuration, the detectors are divided into thirty
sectors, each equipped with their own data acquisition (DAQ) system utilizing fast readout with
flash ADCs (FADCs). We will discuss tracking efficiency, accuracy and DAQ deadtime here,
and will present PID in the next section.

3.8.1 Tracking Reconstruction

The tracking efficiency and accuracy of the GEM chambers are studied by running a full GEANT-
4-based simulation for both DIS and background events. The GEANT-4 outputs are digitized
using the SoLID-GEM digitization package, which simulates realistic GEM detector responses
and convert the information into ADC signals on the readout strips. A tracking reconstruction
package is used to analyze the ADC output. It first performs a GEM clustering in order to re-
construct the hit positions on the GEMs, and then performs a concurrent track finding and fitting
using the Kalman Filter algorithm. Figure 9 shows the simulated GEM tracking efficiency and
accuracy as functions of the beam current. The accuracy is defined as the fraction of GEM events
for which the reconstructed tracks are the same as the incident DIS tracks.
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Figure 9: Simulated single-track efficiency and accuracy for GEM tracking vs. beam current.
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For the 3 µA beam current planned for the proposed measurement, both single-track ef-
ficiency and single-track accuracy are very high and there is only a slight dependence on the
current (event rate). The efficiency in principle will cancel out when forming yield asymmetries
between e+ and e− runs, and any rate-dependence can be corrected. Furthermore, an overall
difference in the efficiency between e+ and e− runs will cause a constant shift in the measured
asymmetry, which can be absorbed into the “luminosity” term, see section 5.1. The only system-
atic effect that the tracking efficiency could cause on the extraction ofC3q is a possible difference
in the (x,Q2) dependence between e+ and e− runs. We have studied this effect by changing the
pion background rate in the simulation to mimic the higher π+/DIS ratio for e+ runs than the
π−/DIS ratio for e− runs, and found some dependence on (x,Q2) in the tracking efficiency
when the pion rates are increased by a factor of 10, although simulations with higher statistics
are required to study the effect to higher precision or for smaller changes in the pion rate. We plan
to measure the GEM efficiency for the full coverage during early running of SoLID experiments
to confirm the simulation results, as well as with the e+ beam, such that the efficiency difference
between e+ and e− runs can be determined to a high degree of precision and corrected.

For accuracy of track reconstructions, the mis-identification of tracks causes the events to
be sorted in incorrect kinematic bins and consequently a shift in the measured asymmetry. The
effect on the measured asymmetry was studied by calculating the asymmetry based on recon-
structed kinematics and compared with the simulated value without the background. It was
found that the shift in the asymmetry is at no more than 0.2% relative, which can be further
corrected by carefully studying the pileup of GEM signals. We will use an estimated value of
0.2% as the relative uncertainty in the measured asymmetry due to event reconstruction.

3.8.2 DAQ deadtime

Figure 10 shows the expected FADC deadtime as a function of per-sector rates, measured us-
ing pulser signals. The expected rate of the proposed measurement is about 1 kHz per sector,
determined by the sum of the DIS rate and the online pion trigger with particle identification,
and the DAQ deadtime is at the level of 2 × 10−4. In real running of the experiment, the DAQ
deadtime will be measured by sending a pulser of known frequency into the DAQ, and the ratio
of accepted and initial pulser events provides a confirmation of the DAQ deadtime calculation.
This deadtime correction will be applied to the measured yields. Because we will take data with
e+ and e− at about the same current, we expect the deadtime correction to cancel to a large ex-
tent between the two data sets when forming the asymmetry. Additionally, the FADC deadtime
is the same regardless of the kinematics of the events. Therefore, an overall deadtime difference
between e+ and e− runs will cause a constant shift of the asymmetry that can be absorbed into
the “luminosity” term when extracting C3q, see section 5.1. In short, we expect the systematic
uncertainty in the asymmetry measurement and C3q extraction due to DAQ deadtime to be either
negligible or will be taken into account in our analysis process.
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Figure 10: Measured FADC deadtime using a pulser system. The deadtime is shown in % as
function of the pulser event rate in kHz, for two different signal widths. The system used to
perform this measurement is part of the SoLID pre-R&D project currently ongoing at JLab.

3.9 Background Particles and Particle Identification

For any background in DIS, let f be the (average between e+ and e− runs) fraction of back-
ground to DIS event yields in production runs, f ≡ Ybg/YDIS, and let Abg be the asymmetry
of the background. The DIS asymmetry can be obtained from the measured (total of DIS and
background) asymmetry Atotal as

ADIS = (1 + f)Atotal − fAbg . (19)

This will cause not only a correction to the asymmetry but also an increase (widening) of the
statistical uncertainty:

(δADIS)2 = (1 + f)2(δAtotal)
2 + f2(δAbg)

2 + (δf)2(Atotal −Abg)2, (20)

where δf and δAbg are the uncertainties of the background. In PVDIS, the background does
not have a large asymmetry and the widening of the statistical uncertainty is very small. This is
different for Ae

+e− because the asymmetries of charged pion and proton background are large.
We discuss charged particle and pair production background separately below. We will also
discuss about events scattering off the cryo target endcaps.

3.9.1 Charged Particle Background and Particle Identification

The typical background in DIS are photo-produced charged pions. For SoLID, electrons are
identified using a light gas Cherenkov detector and the electromagnetic calorimeter (ECal). The
ECal’s particle identification (PID) performance optimized for SoLID PVDIS setting is shown
in Fig. 11. Combined with the estimated charged pion rate, the fraction of pion contamination
with ECal PID is shown in Fig. 12 for the ratio π+/e+ in e+ runs. As one can see that the π/e
contamination with ECal alone is expected to be below 2% for most of the DIS region, though it
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can be up to 5% at low x. Once Cherenkov PID cuts are applied, the contamination fraction will
be further suppressed by factor of 100 or more, bringing it down to 10−4 to 10−3 level.

The asymmetry of charged pions can be determined from the same experimental setup as DIS
events, by accepting events that satisfy the pion signal type (i.e. a pion trigger, a common practice
utilized by DIS experiments). Let the raw pion to electron ratio be rπ/e, the pion contamination
fraction in DIS events would be fπ/e = rπ/e/ηπ where ηπ > 104 is the pion rejection factor
provided by ECal and Cherenkov combined. We assume that every one out of PS (an integer
known as the “pre-scale” factor of the pion triggers) raw pion events will be collected and the
asymmetry measured, the uncertainty of the charged pion background asymmetry is ∆Aπ =

1
fπ/eηπNe/PS

and Eq. (20) becomes

(∆ADIS)2
π bg =

1

NDIS
+

fπ/e

ηπNDIS/PS
+ (Atotal −Aπ)2(∆fπ/e)

2 , (21)

where NDIS is the total number of DIS events collected and we have used δAtotal = 1/Ntotal =
1/NDIS/(1 + fπ/e). Since fπ/e < 10−3, ηπ > 104, the second term on the RHS of the above
equation can be omitted and we only need to consider the third term. Additionally, from previous
data [30], charged pion background has a ≈ 30% asymmetry between e+ (π+ background) and
e− (π− background) settings. Since Atotal is at 10−2 to −3 level, we can ignore the Atotal in the
parentheses and

(∆ADIS)2
π ≈ 1

Ne
+ (Aπ)2(∆fπ/e)

2. (22)

The value of fπ/e can usually be determined to percent level, bringing ∆fπ/e to 10−5 (absolute).
Relative to the goal of the measurement ∆ADIS which is about 10 ppm or larger, the widening
of the uncertainty is not significant in most of the kinematic bins. The above method can also
be applied to the proton background, which has similar PID efficiency, though is only present
for e+ runs and thus has a 100% asymmetry. The proton background rate was estimated using
Wiser’s fit [31]. We will use Eq. (22) to calculate the effect on the asymmetry uncertainty from
both charged pion and proton backgrounds.

3.9.2 Pair Production Background

Pair production contamination for the proposed kinematics has been estimated, see Fig. 13. The
π0 cross section was calculated by taking the average of π+ and π− productions off a proton
target from Wiser’s fit [31], scaled by A0.8 with A = 2 for the deuteron, and followed by the
decays of π0 → 2γ and γ → e+e−. The method was found to be in good agreement with the
pair production cross section measured in the Hall A dn2 experiment at 6 GeV [30] and the more
recent Hall C F2 experiment at 11 GeV [32]. For the systematic effects of pair production we
can follow a similar method as for charged pions. The main difference is that the pair production
is caused by π0 decay, and π0 production is expected to be the same for e+ vs. e− beams, i.e.
Apair ≈ 0. We can assume Apair . 1% just to be conservative but the second term on the RHS
of Eq. (20) will be the dominant one.

We will spend some time taking data with the SoLID in reversed polarity – e+ detection for
e− beam and e− detector for e+ beam, traditionally called “positron runs” but we avoid using
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this term in this document – and denote the ratio of reversed polarity over production runs as α.
Starting from Eq. (20) and letting ∆Apair = 1/

√
Npair = 1/

√
αfpairNDIS where Npair is the

expected pair production event count from reverse-polarity runs, we obtain:

(∆ADIS)2
pair =

1

NDIS
+

fpair

αNDIS
+ (Apair)

2(∆fpair)
2 . (23)

Now one can see the second term will contribute if fpair is at the percent level. To keep the
widening of the uncertainty under control, we will set α = 0.1, i.e. we will spend 10% of
beam time on reverse-polarity runs. Additionally, we assume fpair can be determined to 3%
relative precision and take into account the third term assuming Apair . 0.01. Both effects on
the widening of the asymmetry uncertainty will be taken into account in our analysis.

3.9.3 Scattering from Target Endcaps

As described in section 3.5, the cryotarget “cell” typically has entrance and exit “endcaps” made
of 0.5 mil (less than 0.15-mm) of aluminum. One can measure event count contribution from
the aluminum endcaps using a “dummy” target – a target made of two bare pieces of aluminum
placed at the same location as the cryo target endcaps. However, dummy target measurements
do not collect enough statistics to measure aluminum asymmetry precisely and one must rely on
calculations to estimate its effect. We note that because aluminum (27Al) is almost isoscalar, the
e+e− asymmetry should be similar to that of the deuteron. Using parton model for the proton and
the deuteron asymmetries (see Appendix A), we found Ae

+e−
Al to differ relatively from Ae

+e−
d by

0.2% at low x to 0.8% at high x. We did not consider EMC effects which can change these ratios
slightly. Considering the material thickness ratio of 5 mil of aluminum to 40-cm long liquid
deuterium (0.169 g/cm3 in density), the endcaps contribute to about 1% of DIS event counts and
the effect on the measured asymmetry is therefore less than 0.01% relative and is negligible.
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4 Data Analysis Procedure and Systematic Uncertainties

In this section we first outline the analysis procedure towards extractions of Ae
+e−
d from data.

From the asymmetries we will also form the structure function F γZ3 using world data on F γ1 as
inputs. Then we focus on systematic uncertainties that enter the analysis procedure and inter-
pretation of the measured asymmetries. Systematic effects caused by specific components of the
experimental setup were already described in the previous section and are only summarized here
when relevant. Effects such as differences in the luminosity, beam energy, and (if applicable)
momentum of the scattered DIS events between e+ and e− runs, are discussed. These effects
will be dealt with using a multi-parameter fit, see section 5.1. We will dedicate section 4.5 to
radiative effects (bin migrations), section 4.6 to Coulomb correction, section 4.7 to QED higher
order contributions, and section 4.8 to higher twist effects.

4.1 Analysis Procedure

1. From data collected with each beam, we first form the yields

Y ± =
N±

Q±η±effLT
, (24)

where the superscript represents the sign of the beam particle. N is the event count of
interest, Q the accumulated beam charge measured by the BCM (section 3.4), and ηeff is
the SoLID tracking and detection efficiency (section 3.8). The DAQ livetime is assumed to
be nearly 100% as expected for the FADC readout (section 3.8). Yields can be formed for
DIS, charged background (pions and protons), and for pair production background using
reverse polarity runs.

2. Then we form the measured asymmetry

Ameas =
Y + − Y −

Y + + Y −
, (25)

again on both DIS and charged particle background events (charged pion and protons)
using the hadron triggers. Similarly, the asymmetry of the pair production background is
formed from data collected with reversed polarity runs.

3. To form the DIS asymmetry ADIS, we subtract the background asymmetries from Ameas

using Eq. (19), where the background contamination fraction f = Ybg/YDIS with yields
Y calculated in step 1.

4. Now we can apply corrections for bin migration and subtract QED higher-order contri-
butions from the asymmetry. This will provide the asymmetry data that enter the multi-
parameter fit, Eq. (27) of section 5.1.

5. Once we obtain the fitted results for the beam energy and luminosity differences, one
can correct the asymmetry with these two effects and obtain the electroweak asymmetry
Ae

+e−
d .

6. Lastly, we form F γZ3 using the asymmetry Ae
+e−
d and Eq. (13), with the world F γ1 data as

inputs.
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4.2 Difference in Luminosity

As described in section 3.4, the beam current in Hall A is measured by the BCM and calibrated
by the Unser or Faraday cup. While the beam charge in principle is corrected for in the yield
calculation in Eq. (24), the BCM and the Unser system can have slow drifts over time, causing an
asymmetry between the measured e+ and e− yields that can’t be accounted for through charge
normalization. Since we plan to measure the asymmetry Ae

+e−
d to 101 to 102 ppm level, it is

unlikely that this slow drift in BCM between e+ and e− runs can be controlled at a precision
that is negligible compared to the statistical uncertainty. In addition, the different beam sizes can
cause different target density change (boiling effect) between e+ and e− runs. We will refer to
the combined effect of the BCM drift and target density fluctuation as a “luminosity” difference
between e+ and e− runs, which cannot be directly measured and must be obtained by fitting
the asymmetry data. As described in section 3.8, this “luminosity” term can also absorb any
kinematic-independent differences in the tracking efficiency and DAQ deadtime between e+ and
e− runs. In the following we will assume this luminosity difference can be up to 1% between e+

and e− runs.

4.3 Difference in the Beam Energy and Scattered Lepton Momentum

Similar to the luminosity, the energy difference between e+ and e− beams cannot be controlled
to below a relative 10−5 to −6 level using existing beam energy measurements, though one can
argue that for the typical energy resolution of 5 × 10−4, there must be cancellation in the sys-
tematics of energy measurements between e+ and e− beams and thus the energy difference can
be much smaller. However, we found that unless the difference is known to 2 × 10−5 or better,
one must account for the possible energy shift when analyzing the asymmetries.

A shift inEbeam is amplified in the observed rates because of theQ2 dependence of the cross
section. Similarly, if the momentum of the DIS particles differs slightly between positive and
negative polarity runs of SoLID, it will cause a difference in the observed rate, though studies of
the SoLID field map show that the difference in the SoLID fields is well below the 10−5 level
(section 3.6) and we have designed a field mapping device to control the field repeatability and
stability to below 10−5 (Appendix C). In the following, we will assume the difference in the
beam energy is at most 5 × 10−4 (relative), and that in the DIS particles’ momentum at most
1 × 10−5 (relative). Fortunately, kinematic dependence of these effects helps to separate them
from electroweak contributions to the asymmetry.

4.4 Background Contamination

While the response of the SoLID magnet and detectors does not depend on the particle charge,
e+ and e− runs will have different backgrounds. We have simulated the π−/e−, π+/e+ and p/e
(proton over DIS events) ratios and found they are comparable. Because we expect high perfor-
mance from the PID detectors, and the SoLID DAQ can provide hadron triggers for measuring
the asymmetries of these background events, we expect the effect from both charged pion and
proton backgrounds to be very small. This was indeed the case for the 6 GeV PVDIS experi-
ment [7]. Nevertheless we will use Eq. (22) to calculate the widening of asymmetry uncertainties.
Compared to charged pions and protons, pair production background cannot be distinguished
from DIS leptons. As described in section 3.9.2 and assuming 80 days of production beam time,
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we will spend 8 days to run SoLID at reverse polarity (negative polarity for e+ beam and vice
versa) to measure the pair production background. We will use Eq. (23) to calculate the widening
of the asymmetry uncertainties and fold this into the multi-parameter fit.

4.5 Radiative Corrections (Bin Migration)

In typical JLab experiments, radiation effects due to energy loss of incoming and scattered elec-
trons passing through material shift the kinematics at the reaction point (vertex) towards lower
Q2 and higher x. This effect is often studied by running a simulation tool with the radiation effect
turned on, and kinematic shift of the reaction vertex (bin migration) is corrected. To assist such
“radiative corrections”, data will be taken with a 6.6 GeV beam to ensure the accuracy of the
calculation at the vertex. This is particularly important for the proposed measurement because
of the large asymmetry caused by higher-order QED contributions (see next section). Figure 14
shows the distribution of reaction vertices for 11 GeV production with radiation effect turned on,
and the x and Q2 coverages of the 6.6 GeV runs. One can see that the 6.6 GeV runs will cover
most of the low Q2 region that migrates into the production data due to radiation effects.
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Figure 14: Bin migration for 11 GeV productions runs (the colored contours show the vertex
kinematics) and the kinematic coverage of 6.6 GeV runs (lower yellow contour, vertex only).

Detailed rates and statistical uncertainty estimate for the 6.6 GeV run are shown in Figs. 15
and 16. The asymmetry shown is from the electroweak contribution only. The PDF uncertainties
are at less than 2% level and are omitted here. QED higher-order corrections can be carried out
similarly to the 11 GeV run. The ratio of pair production over DIS is found to vary between 10−3

and 2%, and thus it is not necessary to run reverse-polarity runs for 6.6 GeV.
Following the prescription of [7] where the uncertainty due to bin migration was found to be

at 0.4% level for the Q2 = 1.9 (GeV)2 point, we estimate 10 days of running at 6.6 GeV will be
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Figure 16: Values of Ae
+e−
d in ppm for the 6.6 GeV run, calculated from MMHT14 and CT18.

The expected relative statistical uncertainties in percent are shown for kinematic bins where they
are below 30%. The beam time is 10 PAC days at 3 µA and the baffles are in place.

sufficient to constrain the uncertainty due to bin migration to a sub-% level on the asymmetries.
This does not include the uncertainty due to QED higher-order corrections for the 6.6 GeV runs,
which should be treated separately, see section 4.7.
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4.6 Coulomb Correction

Once the incident positrons (electrons) approach the target nucleus, they are decelerated (accel-
erated) by the nuclear Coulomb field. Similarly, outgoing positrons (electrons) are accelerated
(decelerated). Such Coulomb effects, commonly known from differences between energy spec-
tra of nuclear β± decay, were measured in electron scattering [33]. The effect of the nuclear
Coulomb field in lepton scattering can be approximated as a change in the incident (beam) en-
ergy Eb,eff = Eb − VC and a change in the scattered energy E′eff = E′ − VC , where VC is the
value of the effective Coulomb potential energy seen by the lepton during the scattering process.
In [33] the size of VC was determined by comparing e+ and e− quasi-elastic scatterings off a
12C and a 208Pb target, and the data were fitted to yield

|VC | =
(1.27± 0.10)MeV fm

〈r2〉1/2
Z, (26)

where Z and 〈r2〉1/2 are the atomic number and the RMS radius of the target nucleus, respec-
tively. For the deuteron, Z = 1 and using 〈r2〉1/2 ≈ (1.2 fm)A1/3 = 1.51 fm, we obtain
|VC | = 0.84±0.066 MeV, i.e. effective shifts of the beam energy at the (7.6±0.6)×10−5 level
(for 11 GeV), and the scattered lepton’s momentum at the (42±3.3)×10−5 level (for 2 GeV). In
a more recent work [34], Coulomb correction was approximated using the effective momentum
method similar to [33]. Because the Coulomb effect correction is small, the approximation using
the effective energy (momentum) to correct it should be sufficient and can be incorporated into
the procedure described in section 4.5.

4.7 Higher-order QED Contributions

At the level of one-boson exchange (QED LO), the e+ and e− DIS cross sections are identical. At
higher orders, two-boson exchange corrections contain contributions with opposite signs for e+

and e− scattering and cause a difference in the cross sections. For elastic scattering and inelastic
scattering at low Q2, the NLO corrections are not well understood and the so called “two photon
exchange” (TPE) process where the two photons are both “hard” (of similar energy) is believed
to be the reason behind the discrepancy in the measured proton form factor ratio GpE/G

p
M data

between the cross section (Rosenbluth) method and the polarization transfer method. For a
review of the TPE topic see [35].

For DIS, the NLO processes (including TPE) are straightforward to calculate. We have
performed a NLO QED calculation of the e+ vs. e− DIS asymmetry on the deuteron. The
program used is a Monte Carlo event generator developed for HERA [36, 37, 38] and modified
for the fixed-target setting of the proposed measurement. The asymmetry Ae

+e−
d at the LO

level (only one-photon and one-Z exchanges) is consistent with calculations using Eq. (10) to
within 3%. A thorough check will be performed in future studies to pin down the origin of this
difference. The NLO calculation includes the NLO level vertex diagrams, box diagrams with an
additional photon and one-photon radiation from leptons and quarks. Everything was calculated
for DIS, i.e. in the parton model, and with MMHT PDFs. The size of QED NLO corrections
from this calculation will be given in Fig. 17.

If we assume the parton model to be a valid framework, then the accuracy of QED corrections
is limited only by the omission of higher-order terms and can reach a high precision. While
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higher-order calculations involving hadronic structure beyond the parton model, including quark-
quark correlations, are more difficult to carry out and are model-dependent, we note that some
of these effects have been categorized as the ”higher-twist” effect, to be discussed next. Should
the proposed measurement be approved, higher order QED processes, along with O(αS) QCD
corrections, will be studied carefully. Our goal is to calculate the higher order corrections (QED
and QCD) to 1% level or better, which should be limited mostly by the uncertainty of the input
PDFs.

As an alternative to the standard radiative correction approaches that have been used in the
literature, a new approach [39] has been developed recently based on the simultaneous factoriza-
tion of both QED and QCD effects, which allows corrections to be computed in a systematically
improvable way. Currently the formalism has been worked out at O(α2) in the electromagnetic
coupling; higher order contributions, at which TPE effects will enter, are being computed [40]
and should be available by the time the experiment proposed here would run.

4.8 Higher-Twist Effect

Higher-twist (HT) effects refer to corrections suppressed by powers of 1/Q2. An example are
processes with correlated pairs of quarks or gluons inside the nucleus. The HT effects modify the
asymmetries through a change in the absorption cross-section ratio Rγ in Eqs. (14), or through
changes in the structure functions F γ1 and F γZ3 . The effect on Rγ was estimated in [41] and was
found to be negligible. Studies of HT effects on the γZ structure functions can be dated back to
the SLAC PVDIS (E122) experiment [42, 43], and more recently in [44, 45, 46]. These works
all focused on the C1q (F γZ1 ) contribution to the PVDIS asymmetry. Though irrelevant for the
proposed measurement, they all found the HT effects on the ratio F γZ1 /F γ1 to be small.

There is no theoretical estimation of the HT effects on F γZ3 that is directly relevant for the
Ae

+e−
d asymmetry. We consider two approaches. The first is to use data on the neutrino structure

function F ν3 , for which the HT term was extracted as xF ν3 = xF ν3 + Hν
3 /Q

2 [41, 47]. Because
the deuteron structure function F ν3,d = (uV + dV + 2s − 2c̄) (per-nucleon as in [41]) has a

similar quark content as F γZ3,d = uV + dV + 4
3cV + 2

3sV (per-nucleus as in this document), one

can use Hν
3 as an estimate of the HT effects on F γZ3 . Then we applied CJ15’s fit for the HT

effect of F γ2 [48]. We found the asymmetry to shift by a few percent (relative) and the shift
has a x dependence. The net effect of this shift is a change in the asymmetry vs. Q2 slope that
significantly affects the interpretation of the asymmetry in terms of C3q. Compared to the HT
effects of F1,2 structure functions, the value of Hν

3 is much larger and the uncertainty is also
rather large. There is unfortunately no new data on differential (anti)neutrino-nucleus DIS cross-
sections that can be used to improve the analysis in [41], though there is a plan to improve the
neutrino data precision [49].

In the second approach, we note that it is a common practice in parameterizations of structure
function data to assume the same HT effects on F γZ3 as on F γ2(1), rendering a full cancellation
of HT effects on the asymmetry. For a conservative estimate, we apply H2, the HT term for F γ2
structure function from CJ15 to our kinematic coverage [50] and assume the same effect on the
Ae

+e−
d asymmetry, i.e. no cancellation from possible HT effects of F γZ3 . We found the shift in

the extracted C3q is about a quarter in size compared to the first approach, and the uncertainty in
the shift using CJ15’s uncertainty on H2 is negligible.
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We will present quantitative results of both approaches in section 5.1. Note that the HT
effects mostly affect the extraction of C3q and not F γZ3 .

4.9 Error Budget Summary

For convenience, in Table 1 we list a few experimental uncertainties that are common to all kine-
matic bins. The uncertainties due toQ2 determination is from [16] (SoLID PVDIS measurement)
as we will utilize the same SoLID setup. The uncertainty due to bin migration is deduced from
6 GeV PVDIS results (section 4.5), and those due to event reconstruction and DAQ deadtime
were discussed in section 3.8. The effect from the DAQ deadtime is considered negligible in the
extraction of the electroweak contribution of the asymmetry because the same deadtime applies
to all events. The full uncertainty includes also the statistical uncertainty (Fig. 7), uncertainty
due to background correction (Eqs.(22) and (23)), PDF uncertainty (Fig. 8), QED higher order
contributions (sections 4.7), and higher-twist effects (section 4.8, for C3q extraction only).

Table 1: Error budget table. See text for details.
Source Uncertainty on Asymmetry
Q2 0.2% relative

Bin migration 0.4% relative
Event reconstruction 0.2% relative

DAQ deadtime negligible if the same for all events

5 Projected Results

In this section we provide projected results on C3q and F γZ3 and also make a connection with
two-photon-exchange physics at the end.

5.1 Extraction of 2C3u − C3d Using a Multi-Parameter Fit and a Monte Carlo
Method

In Fig. 17 we plot the expected results on the electroweak Ae
+e−
d , calculated using Eq. (12) and

normalized by Y (y)RV /(1 + RS/5), as functions of x and divided into Q2 bins. A small step
size in x is used to emphasize the kinematic dependence of experimental effects. The EW contri-
bution calculated using the parton-model expression, once normalized by Y (y)RV /(1 +RS/5),
is essentially a constant at a fixed value of Q2 (the effect of RC can be ignored at JLab energy).
In Fig. 17 we also show two calculated experimental effects: ∆AEb,max, contribution to the
asymmetry if the beam energy of e+ is lower than e− by 5 × 10−4 (relative); and ∆AEp,max,
if the magnetic field of SoLID in the positive polarity differs from that at negative polarity by
1 × 10−5 (relative). Additionally, QED NLO contributions from the calculation described in
section 4.7 are shown, multiplied by factor 1/5 to fit into the figure. One can see that the ex-
perimental effects have a drastic x dependence, which will be used below to separate them from
the electroweak contribution to the asymmetry. We also studied the Q2 dependence in fixed x
bins but the effects are not as prominent, though more careful studies can be done to perfect the
fitting procedure.
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Figure 17: Expected size for the EW contribution to the asymmetry Ae
+e−
d divided by

RV Y (y)/(1 + 0.2RS) (red solid circles) vs. x for each Q2 bin. The error bars are expected
statistical uncertainties. The blue curves show ∆AEb, the expected shift in the asymmetry if the
beam energy of e+ is lower than e− by 5 × 10−4 (relative), and the green curves show ∆AEp,
the expected shift in the asymmetry if the magnetic field of SoLID in the positive polarity differs
from that at negative polarity by 1× 10−5 (relative). A difference in the luminosity between e+

and e− runs (not shown) will cause a nearly uniform shift of the measured asymmetry in all bins.
The QED NLO contribution is shown by magenta curves after being multiplied by factor 1/5.
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5.1.1 The Fitting Method

We generated “pseudo” data by assuming three random numbers that apply to all bins: d1 for
the luminosity difference up to 1% = 104 ppm; and d2 and d3 as coefficients for ∆AEb,max

and ∆AEp,max, respectively. All three terms represent differences between e+ and e− running
that cannot be determined by existing monitoring methods. Pseudo data are generated in each
bin using the expected statistical uncertainty and with the three experimental systematic effects
applied. All pseudo-data are fitted using

Apseudo−data = p0(−108 ppm)Q2Y (y)
RV

1 + 1
5RS

+ p1 + p2∆AEb,max + p3∆AEp,max (27)

where p0 represents 2C3u − C3d. The χ2 is calculated using the uncertainty of the asymme-
try (either statistical or total that includes widening from charged particles and pair production
background events) in each bin and then minimized.

To understand the impact of each systematic effect, we practiced the generation of the pseudo
data and the fitting in stages. First, we excluded the ∆AEb,max and ∆AEp,max terms when
generating the pseudo data – setting d2 = d3 = 0 and subsequently p2 = p3 = 0 when fitting –
and minimize the χ2 using the statistical uncertainty of the asymmetry in each bin, we obtain:

∆(2C3u − C3d)stat+lumi = ±0.0301 . (28)

If we include charged particles and pair production background events, i.e. use the uncertainty
of the asymmetry in each bin calculated from Eqs. (22) and (23), we obtain:

∆(2C3u − C3d)stat+bg+lumi = ±0.0323 . (29)

We further included the uncertainties of Table 1 and those due to the uncertainty in the PDF
inputs at this stage. But these effects are found to be sub-1% level on the asymmetry and the
differences in the fitted results are negligible.

Next, we took into account the ∆AEb,max term by setting nonzero d0,1,2 and fitting p0,1,2,
we obtain:

∆(2C3u − C3d)stat+bg+Eb+lumi = ±0.0375 . (30)

If we also include the ∆AEp,max term by setting nonzero d0,1,2,3 and fitting p0,1,2,3, we obtain:

∆(2C3u − C3d)exp = ±0.0650 , (31)

which immediately doubles the uncertainty. This is partly due to the added degree of freedom
in the fit and partly due to the competing effects between ∆Eb and ∆Ep, since both affect Q2

and cause similar shifts to the asymmetry. Clearly, it’s desirable to control the magnetic field of
SoLID to within 10−5 between opposite polarity runs using the method proposed in Appendix C
so the fitting parameter p3 can be omitted.
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5.1.2 Monte Carlo Method for Uncertainty Determination

The theoretical uncertainties in principle can be studied by shifting all pseudo data points up
or down together by ±1% of the QED NLO contribution or the higher-twist contribution to the
asymmetry, then refitting the pseudo data and taking the difference in the fitted values of C3q.
However, we found the difference in the fitted C3q varies from one set of generated pseudo data
to another, reflecting a combined effect of the statistical nature of the pseudo data and the fitting
method. To fully explore the uncertainty of the fitting method described in the previous section,
we adopted a Monte Carlo method as follows: we generated 1000 sets of pseudo data using
randomly selected luminosity, beam energy, and Ep factor (with the magnitude of the Ep factor
below ±10−5) each time, we fit the pseudo data and obtain p0,1,2 (we do not fit the Ep effect,
i.e. set p3 = 0 given that it can be controlled to a desired level). Then we shift the pseudo
data by ±1% of the QED NLO contribution and refit and record the difference in the fitted C3q,
denoted as dC3q,1%QED. Similarly, we shift the pseudo data by the estimated HT contribution
and refit and record the difference in the fitted C3q, called dC3q,HT. From the generated 1000
data sets and fittings we obtained distributions of dC3q,1%QED and dC3q,HT. Taking the standard
deviation of the distribution as the uncertainty, we found:

∆(2C3u − C3d)1% on QED = ±0.009 , (32)

see Fig. 18 (left panel). This is a much smaller effect compared to the relative size of the QED
NLO contribution (2 ∼ 5 times larger than EW contribution). We think the reason that our
method is not very sensitive to the 1% QED shift is that this shift is partially compensated by the
∆AEb term, which has a similar kinematic dependence as the QED NLO term.

For higher twist effects, we shift all pseudo data points up or down together according to the
size of the HT effects on xF γZ3 using Hν

3 from [41] and that on F γ1 from CJ15 [48], we obtain:

∆(2C3u − C3d)HT using Hν
3

= −0.073
−0.164 , (33)

Alternatively, if we assume HT effects on the asymmetry is the same (relative) size as the CJ15’s
result on F γ2 , then

∆(2C3u − C3d)HT using H2 = +0.000
−0.035 , (34)

see Fig. 18 (right panel).
Finally, we note that the MC method gives a wider distribution for the fitted C3q than

Eqs. (28-30), indicating it includes uncertainties of both the data being fitted and the fitting
method. From Fig. 18, we see that the nominal fits have at the largest

∆(2C3u − C3d)stat+bg+Eb+lumi,MC = ±0.053 . (35)

Because the HT estimate using the Hν
3 approach is larger than the experimental uncertainty of

Eq. (35), we expect the data obtained from the proposed measurement will improve the uncer-
tainty on HT of F γZ3 compared to [49], and we will focus on the CJ15 estimate hereafter.

5.1.3 Combined Uncertainties on C3q

Putting together all uncertainty estimate, we obtain from the MC method:

∆(2C3u − C3d)total ≈ ±0.053(exp)± 0.009(1% QED)+0.000
−0.035(HT,CJ15) = +0.054

−0.064 . (36)
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Figure 18: Distributions of the fitted 2C3u−C3d value from the Monte-Carlo fitting method. The
fitting was performed 1000 times though not all pseudo data sets yielded successful fit results.
Left: Nominal value (middle) and with pseudo data shifted by ±1% of the QED NLO contri-
bution (top and bottom). The uncertainty of the pseudo data fitted here included only statistical
uncertainty; Right: Nominal value (middle) and with pseudo data shifted by the maximum and
the minimum of the HT contribution estimated using the CJ15 estimate on Hγ

2 (top and bot-
tom) with a 90% C.L. The uncertainty of the pseudo data fitted here included both statistical
uncertainty and background effects.

5.1.4 Expected BSM Physics Mass Limit

One can now calculate the mass limit using Eq. (18). Using the ±0.060 total uncertainty, we
obtain:

ΛAA = v

√
8
√

5π

∆(2C3u − C3d)
= 246.22 GeV

√
8
√

5π

0.060
= 7.5 TeV , (37)

at the 68% C.L. This will be the first time we set a mass limit on the AA term of the electron-
quark effective couplings.

5.2 Projected Results on F γZ
3

The asymmetry Ae
+e−
d provides a direct measurement of the structure function F γZ3 , as can be

seen from Eq. (13). While a complete analysis from Ae
+e−
d to F γZ1 requires care, we provide

here a simple projection of what can be extracted from the proposed measurement.
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We start from the statistical uncertainty of Ae
+e−
d that includes background correction, then

add in quadrature the experimental uncertainty as listed in Table 1, and uncertainties due to lu-
minosity and beam energy differences using the fitted uncertainties of p1 and p2 in Eq. (27),
respectively. The uncertainty due to the ±1% uncertainty in QED higher-order corrections con-
tributes to the F γZ3 determination twice: first is when subtracting the QED contribution from the
measured asymmetry, second is through its effect on the fitted p2. Both effects were evaluated
and added in quadrature to other sources of the uncertainties listed above. We treat the result as
the total uncertainty of Ae

+e−
d and calculate the uncertainty in F γZ3 using Eq. (13). The simple

parton model of F γ1 , Eq. (17), is used with MMHT14 PDFs as input. Details of the projected
results and uncertainties are shown in Table 2 using standard uncertainty propagation, though
a Monte Carlo method similar to section 5.1.2 can be used for a more robust projection. The
procedure is repeated for 5% and 10% uncertainties in the QED higher-order corrections, and
we found the uncertainties in xF γZ3,d due to QED and dp2 enlarge proportionally.

Table 2: Expected uncertainty on xF γZ3,d extracted from Ae
+e−
d . The uncertainty due to lumi-

nosity and beam energy differences are obtained from the fitting results of p1 and p2 of Eq. (27)
and by varying the QED higher-order contribution by 1% and refitting. The uncertainty due to
PDF inputs and those listed in Table 1 are very small and not shown, but are included in the total
uncertainty calculation.

x Q2 Y xF γZ3,d d(xF γZ3,d )

(GeV)2 from (stat) (stat (1% (lumi (Eb fit (total)
Ae

+e−
d +bg) QED) dp1) dp2)

0.25 3.5 0.812 0.8250 0.0970 0.1350 0.0816 0.0735 0.0008 0.1993
0.25 4.5 0.968 0.8144 0.0227 0.0282 0.0657 0.0496 0.0008 0.0901
0.35 4.5 0.751 0.6978 0.0281 0.0307 0.0572 0.0496 0.0009 0.0865
0.35 5.5 0.892 0.6781 0.0079 0.0087 0.0421 0.0329 0.0008 0.0548
0.45 5.5 0.715 0.4722 0.0194 0.0196 0.0291 0.0294 0.0009 0.0498
0.35 6.5 0.980 0.6629 0.0118 0.0138 0.0336 0.0237 0.0006 0.0450
0.45 6.5 0.835 0.4549 0.0047 0.0048 0.0206 0.0191 0.0007 0.0290
0.55 6.5 0.691 0.2586 0.0098 0.0098 0.0107 0.0142 0.0008 0.0226
0.45 7.5 0.928 0.4413 0.0053 0.0056 0.0178 0.0142 0.0005 0.0241
0.55 7.5 0.793 0.2478 0.0035 0.0035 0.0079 0.0094 0.0005 0.0133
0.65 7.5 0.674 0.1113 0.0047 0.0047 0.0021 0.0050 0.0005 0.0085
0.45 8.5 0.986 0.4302 0.0220 0.0235 0.0122 0.0098 0.0004 0.0359
0.55 8.5 0.881 0.2393 0.0033 0.0034 0.0071 0.0072 0.0004 0.0113
0.65 8.5 0.763 0.1064 0.0025 0.0025 0.0021 0.0037 0.0003 0.0056
0.75 8.5 0.662 0.0351 0.0026 0.0027 0.0003 0.0020 0.0002 0.0043
0.55 9.5 0.948 0.2322 0.0073 0.0075 0.0050 0.0050 0.0003 0.0126
0.65 9.5 0.843 0.1024 0.0022 0.0022 0.0021 0.0029 0.0002 0.0047
0.75 9.5 0.740 0.0335 0.0018 0.0018 0.0004 0.0014 0.0002 0.0029
0.65 10.5 0.910 0.0990 0.0041 0.0041 0.0016 0.0021 0.0002 0.0063
0.75 10.5 0.812 0.0321 0.0015 0.0015 0.0004 0.0010 0.0001 0.0023
0.75 11.5 0.876 0.0310 0.0023 0.0023 0.0002 0.0007 0.0001 0.0033
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Figure 19: Projected results on the per-nucleon F γZ3,d from the proposed measurement (red solid
points). For visual clarity, all data points are offset vertically by c(x) = 0.5(ix − 1) with
ix = 1, 2, . . . 10 and ix = 1, 2, . . . 6 from bottom to top for the proton (left) and the nucleon
(right), respectively. See text for the simple method used to make these projections and details
of existing data and discussions, and Table 2 for numerical values.

We plot the projected F γZ3 (for 1% QED higher-order calculation uncertainty) in their per-
nucleon value in the right panel of Fig. 19 along with existing data from HERA [51] (left panel,
proton) and BCDMS [52] (right panel, nucleon). The existing data are the same as in Fig. 18.12
of PDG [10] but the HERA data plotted there were combined across their Q2 ranges. The
BCDMS data published were for a Q2 range from 80 to 140 (GeV)2 and are plotted here at
110 (GeV)2. The x values of BCDMS cover from x = 0.25 to x = 0.65 with 0.10 step size
and are thus the same as SoLID projected results. The Q2 “gap” in the right panel is likely to be
filled at the future EIC if a positron beam becomes available there. Likewise, one can repeat the
measurement proposed here on the proton with SoLID or EIC to fully map out the left panel.

5.3 Connection to TPE Study

The measurement proposed here is part of JLab positron working group [20] (e+@JLab) research
program. The e+@JLab program in fact is devoting several measurements towards a better un-
derstanding of the two photon exchange (TPE) process with the hope of casting more light on
the proton form factor ratio GpE/G

p
M discrepancy observed between polarization transfer and

Rosenbluth separation methods. Measurement of the difference between unpolarized e+ and
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unpolarized e− elastic scattering off a proton target provides direct access to TPE in elastic scat-
tering. The most comprehensive measurement can be performed with the CLAS12 detector [53].
The CLAS12 measurement can be complemented by a Hall A [54] measurement using the Su-
per BigBite Spectrometer with a focus on low-ε kinematics. The spectrometers in Hall C would
be well-suited for performing a so-called super-Rosenbluth measurement with positrons [55], in
which an L/T separation is performed from cross sections in which only the recoiling proton is
detected. The results of a positron super-Rosenbluth measurement could be directly compared to
those of a previous measurement in Hall A, taken with electrons [56]. Once such dedicated data
are collected and analyzed, the information they provide on TPE in elastic scattering will help
to improve TPE calculations in the DIS region at low Q2 as well. As a result, the uncertainty
of TPE calculations for the Q2 region of the measurement proposed here (Q2 > 6 GeV2, where
the statistical precision is highest) can be better constrained. Meanwhile, we point out that the
proposed measurement will provide the highest precision data to date, which can be directly used
to cross check TPE calculations in the DIS region4.

6 Beam Time Request and Scheduling Considerations

6.1 Beam Time Request

We request 104 days of beam time. This includes 96 days of 3 µA running split evenly between
e+ and e− runs – 80 days DIS production at 11 GeV, 8 days of reverse polarity runs at 11 GeV,
and 8 days of DIS at 6.6 GeV for checking inputs to radiative corrections (bin migration); 2 days
for beam pass changes; 2 days for reversing SoLID polarity during each of e+ and e− runs, a
maximum of 2 days for Compton tune, and 2 days of commissioning. While beam polarization
is not critical for the measurement, we note that parity feedback for helicity-correlated beam
quality control is the norm for JLab experiments and we plan to utilize it through out the run. A
summary of beam time request is given in Table 3.

Not included in the beam time request is the time needed to commission the positron beam,
and the time needed to switch from e− to e+ beam and the setup that follows, which may be
substantial.

6.2 Scheduling Considerations

The proposed measurement is designed to be done with the same configuration as the SoLID
PVDIS experiment, with the only change being the SoLID magnet polarity reversal. Thus it can
run either before or after PVDIS, or run interchangeably. We note that many of the systematic
effects, such as tracking efficiency and accuracy, DAQ deadtime, and Q2 determination will be
studied extensively for the PVDIS experiment, which will run at 17 times higher current than
the proposed measurement. Considering the sequence of e− vs. e+ runs, frequent switching
between e− and e+ runs is highly desired, though probably very difficult to achieve in practice.

4Higher order QED contributions were taken into account in HERA analysis of e+p and e−p DIS data, though a
global fit was used to separate all effects and thus the constraint on TPE is not as direct as the proposed measurement.
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Table 3: Beam time request for the proposed measurement. The target type “carbon” refers
to carbon foils for optics and beam checkout, and “LD2” refers to the 40-cm liquid deuterium
target. Time needed to commission the PEPPo source, the positron beam and the secondary
electron beam, and the time needed to switch between the two beams are not included.

Purpose Beam energy and type, target PAC days
General Commissioning as needed, carbon 2
Compton tune as needed, carbon 2
Production 11 GeV, 3 µA e+ and e− (PEPPo), LD2 80
Reverse polarity runs 11 GeV 3 µA e+ and e− (PEPPo), LD2 8
Reverse SoLID polarity N/A 2
Radiative (bin migration) corrections 6.6 GeV 3 µA e+ and e− (PEPPo), LD2 8
Pass changes N/A 2
Total 104

7 Summary

We propose an exploratory measurement of the lepton charge asymmetry on the deuteron,Ae
+e−
d .

The measured asymmetry will provide a unique access to the third (AA) lepton-quark effective
coupling combination 2C3u − C3d. We attempt to perform a first extraction of this combination
for the electron, and we estimate the uncertainty to be

∆(2C3u − C3d)total ≈ ±0.055(exp)± 0.009(1% QED)+0.000
−0.035(HT using CJ15 H2) . (38)

using the CJ15 estimate on the HT effects. This estimate is based on the expectation that QED
and QCD higher order corrections can be calculated to 1% relative or better. We note that the
extensive TPE study planned for elastic ep scattering using a e+ beam will help to constrain TPE
calculations needed for DIS. We also expect that with more theoretical effort, the uncertainty
due to higher-twist effects will likely be reduced with a dedicated study in the near future. Both
higher-order radiative corrections and HT uncertainties will require support from and close col-
laboration with the theory groups, and some work is already underway. In the meantime, one can
extract the nucleon structure function F γZ3,d and improve upon existing world data (which are so
far provided only by the BCDMS collaboration for the nuclear target), as shown in Fig. 19. While
it is not within the scope of the proposed measurement, many of the practices in this work may
benefit other SoLID experiments as well as similar studies at the future EIC. Finally, we note that
further intensive work will be needed to carry out the proposed measurements and to analyze and
interpret the data, yet we have established a clear roadmap to completing the experiment and, we
hope, opened a new direction for the research program at JLab.
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A Lepton DIS asymmetries from γZ interferences

In this section we present expressions for lepton DIS asymmetries that arise from the γZ inter-
ference, including PVDIS asymmetry and lepton charge asymmetries for both the proton and the
deuteron.

A.1 PVDIS Asymmetry In the Parton Model

We start from the parton model expressions. Details of the derivation will be given in Appendix D
so as not to bore the readers. The PVDIS asymmetry for a proton target, counting u, d, c, s quark
flavors and using C1c,2c = C1u,2u, C1s,2s = C1d,2d, is:

Ae
−,PVDIS
RL,p (39)

= |λ|3
√

2GFQ
2

4πα

[2(u+ + c+)C1u − (d+ + s+)C1d] + Y [2(uV + cV )C2u − (dV + sV )C2d]

4[u+ + c+] + [d+ + s+]

where the− sign in σ− represents electron scattering, |λ| is the magnitude of the incident beam’s
polarization and the parton distributions are q+ ≡ q(x) + q̄(x) and qV ≡ q(x) − q̄(x) (q =
u, d, c, s). The kinematic function Y is defined as

Y (y) ≡ 1− (1− y)2

1 + (1− y)2
. (40)

For the deuteron or any isoscalar target and ignoring nuclear effects,

Ae
−,PVDIS
RL,d (41)

= |λ|3GFQ
2

2
√

2πα

2(1 +RC)C1u − (1 +RS)C1d + Y [2C2u(1 + εc)− C2d(1 + εs)]RV
5 + 4RC +RS

where

RV (x) ≡ uV + dV
u+ + d+

, RC(x) ≡ 2(c+ c̄)

u+ + d+
, RS(x) ≡ 2(s+ s̄)

u+ + d+
, (42)

and the ε’s account for c− c̄ and s− s̄ which are often set to zero in PDF sets:

εc ≡
2(c− c̄)
u+ + d+

, εs ≡
2(s− s̄)
u+ + d+

. (43)

If counting only the light quarks u and d then

Ae
−,PVDIS
RL,d ≈ |λ| 3GFQ

2

10
√

2πα
[(2C1u − C1d) +RV Y (2C2u − C2d)] . (44)
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A.2 Lepton vs. Anti-Lepton Asymmetries In the Parton Model

The asymmetry between right-handed e+ and left-handed e− DIS off a proton target, assuming
c = c̄ and s = s̄ 5, is

Ae
+e−
RL,p ≡

σ+
R − σ

−
L

σ+
R + σ−L

=
3GFQ

2

2
√

2πα
Y (y)

2|λ|uV C2u − |λ|dV C2d − 2uV C3u + dV C3d

4(u+ + c+) + 1(d+ + s+)
. (45)

Similarly, the asymmetry between right-handed e+ and right-handed e− DIS off a proton target
under the same assumption is:

Ae
+e−
RR,p ≡

σ+
R − σ

−
R

σ+
R + σ−R

=
3GFQ

2

2
√

2πα

−2|λ|(u+ + c+)C1u + |λ|(d+ + s+)C1d − 2uV C3uY (y) + dV C3dY (y)

4(u+ + c+) + (d+ + s+)
.

(46)

For the deuteron or any isoscalar target and ignoring nuclear effects:

Ae
+e−
RL,d =

3GFQ
2

2
√

2πα
Y (y)RV

|λ|(2C2u − C2d)− (2C3u − C3d)

5 + 4RC +RS
, (47)

Ae
+e−
RR,d =

3GFQ
2

2
√

2πα

−|λ|[2(1 +RC)C1u − (1 +RS)C1d]− Y (y)RV (2C3u − C3d)

5 + 4RC +RS
.(48)

And if only u, d are considered then

Ae
+e−
RL,d ≈ 3GFQ

2

10
√

2πα
Y (y)RV [|λ|(2C2u − C2d)− (2C3u − C3d)] (u, d only), (49)

Ae
+e−
RR,d ≈ 3GFQ

2

10
√

2πα
[−|λ|(2C1u − C1d)− Y (y)RV (2C3u − C3d)] (u, d only). (50)

The equations for RL and RR asymmetries can be extended to LR, and LL, respectively, by
flipping |λ| → −|λ|. And all can be used for Ae

+e− (unpolarized beams) by setting |λ| = 0.
The asymmetry measured at CERN [18] is B+ ≡ σ+(−|λ|)−σ−(+|λ|)

σ+(−|λ|)+σ−(+|λ|) on a 12C target and thus

can be treated as Aµ
+µ−

LR,d . Substituting |λ| → −|λ| in Eq. (47):

B = −3GFQ
2

2
√

2πα
Y (y)RV (x)

(2C3u − C3d) + |λ|(2C2u − C2d)

5 + 4RC +RS
. (51)

5if considering c 6= c̄ and s 6= s̄, change uV → uV + cV and dV → dV + sV in all proton results, and multiply
C2u(d) and C3u(d) by (1 + εc) ((1 + εs)) – see Eq. (103) – in all deuteron results throughout this section. No change

to the C1q term if calculating Ae
+e−
LL,RR.
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For SoLID we can use unpolarized beam (higher intensity) and measure

Ae
+e−
d = −3GFQ

2

2
√

2πα
Y (y)RV

(2C3u − C3d)

5 + 4RC +RS
(52)

≈ − 3GFQ
2

10
√

2πα
Y (y)RV (2C3u − C3d) (u, d only) . (53)

A.3 PVDIS Asymmetry in the General Case

After establishing the parton-model results for asymmetries, we now consider the more general
case. The general tensor expression for the NC lepton scattering cross section is [57]:

d2σ

dΩdE′
=

α2

Q4

(
E′

E

)(
LγµνW

µν
γ + ηγZL

γZ
µνW

µν
γZ

)
, (54)

where

ηγZ =
GFQ

2

2
√

2πα

M2
Z

M2
Z +Q2

. (55)

We use the leptonic and hadronic tensors from [57], with the exception of adding a minus sign
(in red below) to the γZ leptonic tensor:

LγZµν for e± = −(geV ± geAλ)Lγµν , (56)

where λ = ±1 is the helicity state of the initial lepton. The added minus sign represents the
charge of the lepton (e−, µ− or τ−) in unit of |e|, and is missing in Ref. [57] and Eq. (18.3) of
PDG [10]. The helicity-dependent differential cross section difference is

d2σR
dΩdE′

− d2σL
dΩdE′

=
α2

Q4

(
E′

E

)(
GFQ

2

2
√

2πα

)
|λ|

×
{
geA
Q2

M
F γZ1 + geA

(
Q2

My
−Mx

)
F γZ2 + geV

Q2(2− y)

2My
F γZ3

}
,(57)

and the sum is

d2σR
dΩdE′

+
d2σL
dΩdE′

=
α2

Q4

(
E′

E

)
×
{
Q2

M
F γ1 +

(
Q2

My
−Mx

)
F γ2 (58)

−
(
GFQ

2

2
√

2πα

)[
geV
Q2

M
F γZ1 + geV

(
Q2

Mx

1− y
y
−Mx

)
F γZ2 + geA

Q2

2My
(2− y)F γZ3 |λ|

2

]}
,

where one can set |λ|2 = 1 since so far we are dealing with incident leptons of pure helicity states
λ = ±1. To calculate the experimental asymmetry, one denotes NR(NL) = (1− Pb)(Nh=+1 +
Nh=−1) + PbNh=+1(−1) for the number of beam particles incident on the target during helicity
+1(−1) time windows with Pb the magnitude of the beam polarization, it’s straightforward to
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show one can replace |λ| by |Pb| and the experimental PVDIS asymmetry in terms of structure
functions is:

Ae
−
RL =

|Pb|ηγZ
[
geA2yF γZ1 + geAF

γZ
2

(
2
xy −

2
x −

2M2xy
Q2

)
+ geV (2− y)F γZ3

]
2yF γ1 +

(
2
xy −

2
x −

2M2xy
Q2

)
F γ2 − ηγZ

[
geV 2yF γZ1 + geV

(
2
xy −

2
x −

2M2xy
Q2

)
F γZ2 + geA(2− y)F γZ3

]
. (59)

This result can be used for both collider and fixed target settings. For positron scattering, one
replaces geA → −geA. These results were also presented in Ref. [58] and [59] with M2x

Q2 = M
E for

fixed target settings, though they used a different convention for geV,A and gqV , and have a sign

problem due to using LγZµν from [57]. Equations (61) shows that the F γZ3 (x,Q2) term involves a
spin flip of the quark (gqA) and is suppressed by the kinematic factor Y3 due to angular momentum
conservation. It vanishes at the forward angle θ = 0 or y = 0, and increases with θ or y at fixed x.

One should note the process of replacing |λ| by |Pb| works for all asymmetries derived in
this document and thus we will use |λ| for the magnitude of both helicity and beam polarization,
though there is a difference as outlined above.

Approximations
In the results above we have kept the electroweak contribution to the total cross section in the
denominator, though they can be safely omitted at low to medium energies much below the Z-
pole. Furthermore, we can use Rγ(γZ)(x,Q2), the ratio of the longitudinal to transverse virtual
photon electromagnetic absorption (γZ interference) cross sections to eliminate F2:

F
γ(γZ)
2 =

2xF
γ(γZ)
1 (1 +Rγ(γZ))

r2
, (60)

with r2 = 1 + Q2

ν2
. The asymmetry can now be written as:

APV =
GFQ

2

2
√

2πα

[
geA
F γZ1

F γ1
Y1 +

geV
2

F γZ3

F γ1
Y3

]
, (61)

where the kinematic factors Y1,3 are

Y1 =

[
1 +RγZ

1 +Rγ

] 1 + (1− y)2 − y2
[
1− r2

1+RγZ

]
− 2M2x2y

Q2

1 + (1− y)2 − y2
[
1− r2

1+Rγ

]
− 2M2x2y

Q2

(62)

Y3 =

[
r2

1 +Rγ

]
1− (1− y)2

1 + (1− y)2 − y2
[
1− r2

1+Rγ

]
− 2M2x2y

Q2

. (63)

Our results for Y1,3 are consistent with the fixed-target results in Ref. [58] and [59]. To a good
approximation RγZ can be assumed to be equal to Rγ , resulting in Y1 = 1.
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A.4 Lepton-Charge Asymmetries in the General Case

The above prescription can be extended to e+e− asymmetries. We found similar results:

Ae
+e−
RL =

ηγZ (|λ|geV + geA) (2− y)F γZ3

2yF γ1 +
(

2
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2
x −

2M2xy
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)
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[
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2
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2
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)
F γZ2

] (64)
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(65)

Approximations
Expressing F2 in terms of R and F1 and omitting the EW term in the denominator:

Ae
+e−
RL =

GFQ
2

2
√

2πα

|λ|geV + geA
2

Y3
F γZ3

F γ1
, (66)

Ae
+e−
RR =

GFQ
2

2
√

2πα

[
−|λ|geAY1

F γZ1

F γ1
+
geA
2
Y3
F γZ3

F γ1

]
. (67)

Plugging in parton model F1 for the deuteron, we recover the parton-model result with the only
change being Y → Y3 and the C1q terms need to be multiplied by Y1:

Ae
+e−
RL,d =

3GFQ
2

2
√

2πα
Y3RV

|λ|(2C2u − C2d)− (2C3u − C3d)

5 + 4RC +RS
, (68)

Ae
+e−
RR,d =

3GFQ
2

2
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2πα

−|λ|Y1(2C1u − C1d)− Y3RV (2C3u − C3d)

5 + 4RC +RS
, (69)

For unpolarized beams:

Ae
+e−
d = −3GFQ

2

2
√

2πα
Y3RV

(2C3u − C3d)

5 + 4RC +RS
. (70)
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B Positron beams at Jefferson Lab

This appendix is based on current investigations of the impact of positron beam operation at
CEBAF, that were collected in the document Some practical considerations for a positron source
and positron beam operations at CEBAF from P. Degtiarenko, J. Grames, J. Kowal, J. Musson,
S. Philip, M. Tiefenbak, and K. Welch [60].

B.1 Radiological considerations

Two potential approaches of producing positron beams are considered: one being a separate new
enclosure, the other being the existing injector segment to house the positron source. At the very
high level, the first option would be the safest from a radiological standpoint, as it would allow
shielding to be applied as part of the initial facility design, and allow the shielding and other
radiological controls to be optimized as integral part of the design.

At energies above the photo-neutron production threshold (∼10-15 MeV), any design will
have to address the shielding of neutrons and photons, plus the activation of materials. A 100 kW-
100 MeV system would involve significant shielding, and very high levels of activation in the
targets and surrounding materials, plus significant activation of cooling water used in and around
the targets, and air activation in the vault. Maintenance would also become a significant issue.
The activation would produce a radiological footprint similar to one of the beam dumps in Hall
A or C. In other words, the positron production facility would in effect create a new radiological
facility analogous to the Hall A dump, including cooling water systems, and would benefit the
most from being separated from the existing beam enclosure.

B.2 Beam power considerations

Considering a positron source based on a 100 kW electron beam power, a reasonable way to
produce and capture positrons should be a two-stage design. This would allow to separate the
functions of main energy dissipation, and the positron production. The first stage (a radiator and
a subsequent beam dump) would absorb the main beam energy, and the positron production stage
would see only a few percent of it. This separation would further provide more comfortable heat
and radiation conditions for the positron capture hardware. The design choices may also include
magnetic field removal of the electron beam, as in the current version of the Compact Photon
Source [61].

B.3 Personnel and machine protection

From the Personnel Safety System (PSS) perspective, electrical hazard, PSS and ODH controls
are hereafter considered:
Electrical hazard - concerning the polarity reversal of the dipoles transporting the beam to ex-
perimental halls, the current transducers providing feedback to BELLs system would need to be
replaced if installed after the polarity switch;
PSS controls - building a separate positron injector will require to treat it as a separate segment,
where all necessary PSS controls would have to be installed, in essence a duplication of the ex-
isting injector;
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ODH controls - building a separate segment with equipment using significant quantity of cryo-
gens may require installation of an Oxygen Defiency Hazard system.
From the Machine Protection System perspective, there would be in general no need to alter the
existing equipment around the site, except the new positron injector area.

B.4 Reversal of CEBAF magnetic field

A tentative list of the electrical systems requiring attention for positron beam delivery is:

1. Trims magnet (∼1900 units);

2. ARC1 to ARC10 (10 units);

3. RSEP8 and RSEP9 (2 units), recirculating septa in the West and East ARC;

4. Dogleg1 to Dogleg9 (9 units);

5. XSEP2, 4, 6, 8, 10 (5 units) extraction region magnets for each of 5 passes;

6. YA 2, 4, 6, 8, 10 (5 units) extraction region thin septa for each of 5 passes;

7. Hall A, B, C, D (5 units) magnets that transport beam into each Hall;

8. BSY Dump (1 unit) which allows beam steered into the dump before Halls A, B, C;

9. Hall A and Hall C Lambertson (2 units);

10. Recirculation and transport shunt modules (109 units);

11. End station A Møller quadrupoles (4 units);

12. End station A Møller and Compton dipoles (2 units);

13. End station C quadrupole magnets (2 units);

14. End station C Compton dipole (1 unit);

15. End station D Tagger magnte (1 unit).

All correctors and quadrupole magnets (except one in Hall C) are bipolar power supplies able
to drive positive or negative current, and can be used for electron or positron beams without any
changes in hardware. Other trim magnets used for position modulation and fast feedback are
not expected to be affected by the beam charge. All of the bending dipole magnets in CEBAF
proper are powered by uni-polar power supplies without polarity reversal switches. Most of
the ARC magnets are in a series configuration, meaning that the reversal of the power leads at
the supply effectively reverses the field in all of the magnets powered by the individual power
supply (see Fig. 20 for a typical example). Similarly to the power supplies, the shunt modules
will also need to have leads reversed on the termination in the upstairs chassis. To reduce the
number of reversing operations and to prevent failures/errors, the polarity reversal would have
to be an engineered solution. The system would have remotely controlled switches that can be
configured into the correct state for electron or positron beam. Operational procedures would

48



Figure 20: Typical box power supply for ARC magnets.49



remain unchanged, as the magnet systems are blind to polarity of connection. However, any
portion of the accelerator used to create the electron beam for the production of positrons as well
as to transport positrons would require special attention procedurally.
Each of the physics halls have normal and superconducting magnets of various kinds that are not
controlled by DC power. Their configuration needs should be examined by the various Halls.
Additionally, Hall D is using a permanent dipole to prevent beam into the Hall in case of failure
of the Tagger magnet. This may need to be rotated to get the same effect.

The various magnets of the accelerator are a mix of bipolar and unipolar configurations.
For the bipolar magnets, observations of the relationship between the ~B · ~dl and the current are
consistent with no change in magnetic field versus current after unipolar operation. The meter-
scale dipole magnets configured as unipolar systems exhibit a remnant field in the 10-15 Gauss
range. The most stringent empirical test of the non-influence of this field is the observation of the
fine reproducibility of the beam trajectory after dipole string power supply trips to zero current.
The uncontrolled magnetic field of the dipoles, involving prospectively a flux reversal as the
dipole field collapses, has not been seen to alter the beam trajectory after the multiple hysteresis
cycles executed by protocol after such an event. The known observations seem to indicate that
the magnet iron is magnetically soft enough at the fields in use in the CEBAF accelerator as to
result in no persistent calibration shifts after field reversal and restoration.

B.5 CEBAF diagnostics for positron beams

Since previous positron efforts [62, 63] have successfully employed DCT, cavity, and button-
electrode-based BPM systems, it is our opinion that design for positron production can proceed,
based on data obtained from the JLab experience. Following is a summary of diagnostics behav-
ior and metrics.

BCM resolution analysis

Since electrons and positrons differ only by charge (and magnetic moment), polarity is an ob-
vious difference in the electronic signals. Signal polarity is of little significance, since beam
current is the result of a magnitude-only measurement of the cavity (Q ≈ 104), which is phase-
independent. Also, positron mass and beam size should result in identical beam loading, thereby
producing the same cavity response for a given beam current.

For 25 years, JLab has been operating 33 BCM pillbox cavities to provide detailed cur-
rent information, time of flight measurements, and also as time-of-arrival sensors. Parametric
simulation for various expected beam currents has been performed, which agrees with actual
beam-based measurements (to within 2 dB). Therefore, it is useful to rely on several rules of
thumb for which receiver electronics can be evaluated in the lab. Using this data, the RF output
power is accurately predicted for a large range of beam currents. Figure 21 is a composite of
several JLab beamline elements, of which the BCM cavity is shown in red. Knowing the sensor
output allows one to quickly establish a linearity constant for Ibeam versus Vout, wich in the case
of the standard SS304 JLab BCM cavity isK = 447×10−6 µA/µV, for electron and presumably
positron beams. For determination of resolution, noise power must be known so as to establish
the confidence of the measurement from the resulting signal-to-noise ratio (SNR). If a perfect
system is assumed and sitting in-situ at room temperature (290 K), the noise power for the 50 Ω
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Figure 21: Nomograph of expected BCM cavity power output (red) for various electron/positron
beam currents. Recalling that Ibeam=1 µA results in -40 dBm of output power, then scaling
simply follows 20 log(Ibeam).

receiver possessing a 1 Hz bandwidth is calculated from

Pn = kBTB = −174 dBm-Hz (71)

where kB is the Boltzmann’s constant, T=290 K, and B is the bandwidth. Finally, the resolution
of the BCM is

σ = δIbeam =
δVnoise
K

≈ 1 pA . (72)

In reality, cable losses, receiver noise figure, finite-bit resolution and the fact that the receivers are
intentionally wound for the larger signals of CEBAF impact the ultimate sensitivity. Extensive
JLab experience predicts a minimum detectable signal of ≤ 500 pA implying a composite noise
figure of 27 dB. A large improvement is expected with the JLab digital diagnostics receivers
which possess a 4 dB noise figure.

BPM analysis

Low-Q BPM sensors are somewhat problematic, since they often rely on a directional charac-
teristic. The M15 BPMs at CEBAF are open-wire, 200 Ω structures which, when used with the
standard 50 Ω receiver, have moderate directivity, but are not fully reliant on that quality. It was
shown [64] that regardless of how the BPM is installed, usable signal is available. With respect
to electronics, BPM detection is a relative measurement (aside from any 4-wire applications).
Therefore, as long as the change in response is common to all four sensor electrodes (antennas),
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then a calculated position should be available. It is likely that for any units which have had field
mapping and bench calibrations, the relationship between electrical and physical centers would
be altered. Reversing the necessary BPM sensors within the beamline is an obvious solution if it
appears that sensitivity or orthogonality is compromised.

Assuming nearly-identical behavior for electron and positron beams, the BPM resolution
follows as before by establishing a sensor output, calculating expected noise voltage (Vn), and
applying to the position calculation algorithm. Here, however, the algorithm may have several
forms, which affects the sensitivity a given SNR has on the result. For one-dimension, the
resolution is:

σX =
a

2
√

2

1√
SNR

=
a

2
√

2

Vn
Vs

(73)

where Vs is the signal voltage. Considering the JLab M15 BPM, the typical output power for
100 nA is -102 dBm. Expected noise power for a receiver having a 10 dB noise figure and 10 Hz
bandwidth is -154 dBm. So, the resulting 52 dB SNR predicts a resolution of 10 µm. Note that
the resolution scales inversely with current, and as the square-root of bandwidth. So, at 10 nA,
1 Hz, the expected resolution becomes 300 µm. Table 4 provides the performance of BCM and
BPM in use at JLab.

Ibeam BCM σBCM @ 1 Hz BPM σBPM @ 1 Hz
(µA) (dBm) (pA) (dBm) (µm)
0.01 -80

≤ 500

-120 300
0.10 -60 -100 30

1 -40 -80 3
10 -20 -60 0.3

100 0 -40 0.03

Table 4: Summary of expected BCM and M15 BPM performance from JLab experience.
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C Magnetic Field Considerations

The SoLID magnetic solenoid features a 1.4 T axial magnetic field that extends 3.5 m in length,
with a magnet bore of 3 m in diameter. As seen in Fig. 4, the magnet features a large open
region where the magnetic field needs to be mapped; on the downstream side, an end cap region
houses most of the detectors. The desired magnetic field integral accuracy for the both SIDIS and
PVDIS programs is ∆B/B = 0.2%. For the proposed measurement, the requirement is much
higher, at the 10−5 level, see Section 5.1. Meeting this goal requires high-precision magnetic
field sensors. Additionally, the location of the field sensors should be known to ≤1 mm.

In Sec. C.2, we discuss a field mapping solution that will provide 10−6 (ppm) level accuracy
and precision in ∆B/B. We also discuss possible solutions for improving the field uniformity
in Sec. C.3 and stabilizing and tracking the field in Sec. C.4. The techniques discussed below
have been successfully used for work related to the Fermilab Muon g − 2 Experiment. More
specifically, these techniques improved the magnetic field uniformity of an MRI solenoid at
Argonne National Lab to the few ppm level, which established the method for the absolute
calibration system for Muon g − 2, a critical system for the magnetic field quality. With this
design, the difference in the scattered particle’s momenta can be controlled to much below the
relative 10−5 level between e+ and e− runs.

C.1 Magnetic Field Quality in Reversed Polarity Mode

Based on Opera simulations [65], it is not anticipated that changing the polarity of the magnet
would significantly change the magnetic field vector along the main bore and the first ≈1/4 of
the detector region. This is because the hysteresis B-H curve of the steel that encloses these
regions is flat for the range of B magnitudes needed for SoLID. However, in the remainder of
the detector region the B-H curve response becomes more linear, and it is anticipated that the
magnetic field could change by up to about 2 mT (20 G). Given that the anticipated magnetic
field magnitude in this region is of order 7.5 mT (75 G) for the nominal magnet polarity, such a
large possible change requires a magnetic field map once the polarity of the magnet is flipped.

C.2 Field Mapper System

C.2.1 Design Concept

A field mapping system that sufficiently quantifies the magnetic field in the magnet will consist
of a symmetrical, circular array of magnetometers mounted to a translation stage that can move
the magnetometer assembly along the magnet geometrical axis. The stage can be driven either
by hand or by a non-magnetic motor in discrete steps. At a given axial location, a measurement is
performed where a magnetic field reading is taken on each of the magnetometers on the assembly.
At a given axial location, the magnetometer array can be rotated to a new azimuthal location and
the measurement procedure is repeated; this process is completed for all azimuthal angles to
cover the full 2π coverage of the solenoid. After the full azimuth is mapped, the assembly is
moved to the next axial position and the process repeats. A concept sketch is given in Fig. 22.
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Figure 22: The concept for the magnetic field mapping system (a) and fixed passive shim trays
(b) for the SoLID magnet.

C.2.2 Sensor Selection, Calibration, and Positioning

An optimal choice of magnetometer sensor for the purposes of SoLID is a 3D Hall probe, which
measure all three components of the magnetic field. Probes from the Senis company [66] are ca-
pable of ppm resolution and accurate to <100 ppm in ∆B/B, exceeding the requirements stated
above. The absolute scale of the magnetic field measured by the sensors can be improved by a
calibration procedure that compares the Hall probe readings to those of an NMR-based magne-
tometer. Proton NMR relates the Larmor precession frequency fp of protons to the magnetic field
strength B via fp = (γp/2π)B. Proton-rich NMR samples are used as an absolute benchmark
because the proton gyromagnetic ratio γp is known to very high precision [67] exceeding that
which would impact the precision of the magnetic field measurements. This allows the absolute
magnetic field strengthB to be extracted from the Larmor precession frequency that is measured
in NMR.

The calibration procedure is as follows: the Hall probe and the NMR probe are swapped
back and forth into the same location in a magnet (which is highly uniform in magnetic field
magnitude) and their measurements are compared. The JLab Magnet Measurement Group has
magnets that can facilitate such measurements. Positioning the two probes in the same location
is accomplished by constructing a specialized mounting rig that allows swapping the probes back
and forth in controlled step sizes so that their sensor centers are aligned. Such a step size can
be accomplished by an encoder-equipped motion-controlled system. The encoders that mark
the position of the rig are calibrated by performing controlled motions referenced to fiducial
monuments that are surveyed by a laser-tracking system. With laser tracking typically yielding
<1 mm accuracy, this will ensure accurate positioning of the two probes during the calibration
procedure. Additionally, laser tracking and survey alignment for the field mapper device will
enable sub-mm positioning accuracy. We can leverage the experience, expertise, and resources
of JLab Magnet Measurement Group, working collaboratively with them to develop and build
both the calibration system and the field mapper.
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C.3 Magnetic Field Uniformity

A common technique used in the operation of MRI solenoid magnets, which have very similar
geometry to the SoLID magnet, is to shape the magnetic field to be uniform (generally called
“shimming”) by the placement of small iron pieces at the perimeter of the magnet bore [68]. This
process is called passive shimming since the iron pieces are fixed in space, held in pockets affixed
to the inner diameter of the magnet bore, see Fig. 22. The size and amount of iron pieces to place
at a given location along the magnet axis is determined by an algorithm which derives from
methods developed at General Electric [69, 70] for determining shim coil currents to minimize
magnetic field inhomogeneities. The general algorithm is that of a least-squares minimization
problem to determine the placement and quantity of (assumed saturated) iron pieces in shim tray
pockets in order to minimize the peak-to-peak variation of the magnetic field. After these iron
pieces are inserted into the trays, the field is mapped and the process iterates. Typically, the
magnet must be ramped down to zero field in order to manipulate the iron pieces. Based on
previous experience with MRI solenoid magnets, which have a very similar geometry to that of
the SoLID magnet, it takes roughly 1–2 weeks to shim the field to the desired uniformity (≤10
ppm level in ∆B/B). The physical size of the trays that house the iron pieces can be as small as
2 inches long by 0.7 inches tall, extending the whole length of the magnet bore. This relatively
compact size can work well with the planned occupancy of the magnet bore by the main detector
systems.

C.4 Magnetic Field Tracking and Stabilization

While accurate and precise magnetic field maps are critical for particle tracking, magnetic field
stability is also important; if the magnetic field drifts during the experiment due temperature
changes (which can cause the magnet yoke steel and coils to expand or contract), then the mag-
netic field magnitude at any given point in the bore may change. If this change is not tracked,
then the track reconstruction will be incorrect given an initial magnetic field map at some earlier
time. To mitigate this, magnetic field sensors can be installed in the magnet bore at fixed loca-
tions along its inner diameter to monitor the magnetic field components as they change over time.
The field sensor data is used to feed back to the magnet power supply to make small changes
to the magnet current to maintain a stable magnetic field. This can be accomplished by using a
proportional-integral-derivative (PID) feedback loop; using a programmable current source, the
measured error field (the difference in the measured field and the desired field) is converted into
a small current (typically ≤few mA) that is delivered to the main magnet power supply in order
to make small changes to the magnetic field to maintain the desired value. The time scale of the
feedback loop is determined in a dedicated study that observes the time it takes for the magnetic
field to change relative to when its magnet current was changed.

C.4.1 Radiation Protection Considerations

The Senis Hall probes have a CMOS integrated magnetic field sensor epoxied to a ceramic
structure. At the inner diameter of the magnet bore, the neutron fluence is estimated to be
∼1014 n/cm2 [71]; at this level, the ceramics and electronics of the sensor will be susceptible
to radiation damage. This indicates that shielding for the sensors will be important for radiation
protection.
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D Parton-Model Derivation for Lepton DIS Asymmetries

In this section, we will derive parton-model expressions for the asymmetries of lepton deep
inelastic scattering off a nucleon or nuclear target that arise from the interference between elec-
tromagnetic and electroweak neutral current (NC) interactions. We will focus on the low energy
approximation, i.e., at energies much below the mass of the Z0. These derivations lead to the
parton-model NC asymmetries given in Ref. [11].

D.1 Definitions and conventions

We will follow mostly the convention of Halzen&Martin, and the γ-matrix algebra from Grif-
fiths and Peskin&Schroeder. Kinematics of lepton-quark scattering are defined in Fig. 23. The
photon-fermion vertex term [Eq. (5.17) of Halzen&Martin] is −ieγµQ with Q the fermion elec-
tric charge in units of e =

√
4πα. The Z0-fermion vertex term is

−i g

cos θW
γµ

1

2

(
cfV − c

f
Aγ

5
)
,

where θW is the weak mixing angle, and cfV,A are the vector and the axial-vector charge of the
fermion, respectively, see Table 5.

fermion Qf cfA cfV
νe, νµ, ντ 0 1

2
1
2

e−, µ−, τ− −1 −1
2 −1

2 + 2 sin2 θW ≈ −0.03
u, c, t 2

3
1
2

1
2 −

4
3 sin2 θW ≈ 0.19

d, s, b −1
3 −1

2 −1
2 + 2

3 sin2 θW ≈ −0.34

Table 5: Electromagnetic and electroweak NC couplings for leptons and quarks in the Standard
Model, reproduced from Table 13.2 of Halzen&Martin. Anti-fermions have the same coupling
as fermions.

The photon and the Z0 propagator terms are

−igµν
q2

and− i
gµν − qµqν

M2
Z

q2 −M2
Z

, (74)

Pk  =(E,   )

k’  =(E’,   )

q  =(   ,   )

P’

µ
electron

scattered
electron

incident

exchanged photon

µ

µ

µ initial quarkν

k’

k

q

µ

final quark

Figure 23: One-photon exchange of electron-quark scattering. For electroweak neutral current
interaction, replace the photon by a Z0 boson.
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respectively, where MZ is the Z0 mass.

D.2 Adding AA term to the neutral current weak interaction Lagrangian

We first go through the exercise of deriving the amplitude of neutral current weak interactions in
DIS to check the V V and AA terms of the Lagrangian. Using Feynman calculus, we write the
amplitude of NC eq scattering as:

1

i
MNC = l̄f

[
−i g

cos θW
γµ

1

2

(
clV − clAγ5

)]
li

(
−i
gµν − qµqν

M2
Z

q2 −M2
Z

)
q̄f

[
−i g

cos θW
γν

1

2

(
cqV − c

q
Aγ

5
)]
qi ,

where li,f and qi,f are the Dirac spinors for the initial and the final state electrons and quarks,
respectively. The couplings g is related to the Fermi constant using Eq.(13.35) of PDG [10]:

GF√
2

=
g2

8M2
Z cos2 θW

. (75)

Combined with the limit |q2| �M2
Z we obtain:

MNC = 4
√

2GF

[
l̄fγ

µ 1

2

(
clV − clAγ5

)
li

]
gµν

[
q̄fγ

ν 1

2

(
cqV − c

q
Aγ

5
)
qi

]
(76)

= −GF√
2

[
−2clV c

q
V l̄fγ

µliq̄fγµqi + 2clV c
q
A l̄fγ

µliq̄fγµγ
5qi

+2clAc
q
V l̄fγ

µγ5liq̄fγµqi − 2clAc
q
A l̄fγ

µγ5liq̄fγµγ
5qi

]
. (77)

If we define effective couplings geqV V ≡ −2clV c
q
V , geqV A = C2q ≡ 2clV c

q
A, geqAV = C1q ≡ 2clAc

q
V

and geqAA = C3q ≡ −2clAc
q
A then

MNC = −GF√
2

[
geqV V l̄fγ

µliq̄fγµqi + geqV A l̄fγ
µliq̄fγµγ

5qi

+geqAV l̄fγ
µγ5liq̄fγµqi + geqAA l̄fγ

µγ5liq̄fγµγ
5qi
]
. (78)

Note the signs of the effective couplings are defined such that all of the g terms have the same
(positive) sign on the RHS of Eq. (78). Comparing this with Eq.(10.21d) of PDG [10] we see
that the neutral weak interaction Lagrangian that includes the AA term should be

LNCint =
GF√

2

[
geqV A l̄fγ

µliq̄fγµγ
5qi + geqAV l̄fγ

µγ5liq̄fγµqi + geqAA l̄fγ
µγ5liq̄fγµγ

5qi
]
.(79)

We will use the notation C1,2,3 and gAV,V A,AA interchangeably though there is a difference in
their definition that involves higher-order electroweak radiative corrections.

D.3 The one-photon exchange amplitude

The derivation ofMγ is “textbook” material but we describe it here to show the Feynman calcu-
lus and establish convention that we follow throughout this appendix. Using the photon vertex
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term from D.1 and the projection operator Ph ≡ 1+hγ5

2 with h = +1(−1) for right(left)-handed
lepton spinors, the one-photon exchange amplitude for initial leptons with helicity h is

Mγ,h = −QlQq
4πα

q2
(l̄fγ

µPhli)(q̄fγµqi) . (80)

We emphasize here that we are deriving the amplitude lepton scattering off quarks. The case of
anti-leptons or anti-quarks will be provided in a later section.

The cross section of electromagnetic process is given by

|Mγ
h|

2 = Q2
lQ

2
q

(
4πα

q2

)2 [
(l̄fγ

µPhli)(q̄fγµqi)
]∗ [

(l̄fγ
νPhli)(q̄fγνqi)

]
= Q2

lQ
2
q

(
4πα

q2

)2

(q̄fγµqi)
† (l̄fγµPhli)† (l̄fγνPhli) (q̄fγνqi) . (81)

Using

[ū(b)Γu(b)]† = ū(b)Γ̄†u(b) (82)

with u(b) any spinor state, Γ any 4× 4 matrix and Γ̄† ≡ γ0Γ†γ0, we obtain:

|Mγ
h|

2 = Q2
lQ

2
q

(
4πα

q2

)2 (
l̄iγ

0P †hγ
µ†γ0lf

) (
l̄fγ

νPhli
) (
q̄iγ

0γ†µγ
0qf

)
(q̄fγνqi) . (83)

Then we use P †h = Ph and γ0γ†µγ0 = γµ to obtain γ0P †hγ
µ†γ0 = P−hγ

0γµ†γ0 = P−hγ
µ, and

that when summing over all final spin states
∑

sf=1,2 lf l̄f = /k′ and
∑

sf=1,2 qf q̄f = /P ′ for
massless particles, we obtain:

∑
all final spins

|Mγ
h|

2 = Q2
lQ

2
q

(
4πα

q2

)2 (
l̄iP−hγ

µ /k′γνPhli
) (
q̄iγµ /P

′γνqi
)
.

The P−h and the Ph on the RHS above are redundant (γ5γµ = −γµγ5). Furthermore we use the
trace theorem that ∑

sa=1,2

ū(a)Qu(a) = Tr
[
(/pa +ma)Q

]
(84)

where u(a) is any Dirac spinor state of 4-momentum pa and Q is any 4× 4 matrix, we obtain:

∑
all spins

|Mγ
h|

2 = Q2
lQ

2
q

(
4πα

q2

)2

Tr
[
/kγµ /k′γνPh

]
Tr
[
/Pγµ /P

′γν
]

= Q2
lQ

2
q

(
4πα

q2

)2 1

2

{[
4kµk′ν + 4k′µkν − 4gµν(k · k′) + hkαk

′
β4iεµανβ

]
·
[
4PµP

′
ν + 4P ′µPν − 4gµν(P · P ′)

]}
. (85)

Next we note that terms like kαk′βε
µανβ4gµν(P · P ′) = 0 always because εµανβ = 0 if µ = ν,

and gµν 6= 0 only for µ = ν. Terms like kαk′βε
µανβ(PµP

′
ν + P ′µPν) = 0 always because
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εµανβ = −εναµβ (anti-symmetric under µ↔ ν) but PµP ′ν +P ′µPν = PνP
′
µ +P ′νPµ (symmetric

under µ↔ ν). The remaining non-zero terms give us:

∑
all spin states

|Mγ
h|

2 = 8Q2
lQ

2
q

(
4πα

q2

)2 [
2(P · k)(P ′ · k′) + 2(P · k′)(P ′ · k)

]
.

Using Mandelstan variables s ≡ (k + P )2and u ≡ (k + P ′)2, and ignoring lepton or quark
masses, we have s = 2k · P = 2k′ · P ′ and u = 2k · P ′ = 2k′ · P = −(1− y)s:

∑
all spin

|Mγ
h|

2 = 4Q2
lQ

2
q

(
4πα

q2

)2

s2
[
1 + (1− y)2

]
. (86)

D.4 The Z − γ∗ interference term

To derive the amplitude for the Z − γ∗ interference term, we use Eq. (80) forMγ with initial
lepton beam of helicity h, and for Z exchange we add initial helicity projector to the intial lepton
spinor of Eqs. (76-77):

Mh
NC =

√
2GF

[
l̄fγ

µ
(
clV − clAγ5

)
Phli

] [
q̄fγµ

(
cqV − c

q
Aγ

5
)
qi
]
, (87)

The interference term is M∗γMZ + MγM∗Z and that below we only give expressions for
M∗γMZ . The corresponding expressions for MγM∗Z are obtained from the hermitian con-
jugate.

Mh ∗
γ Mh

NC

= −QlQq
4πα

q2

[
(l̄fγ

µPhli)(q̄fγµqi)
]∗√

2GF l̄fγ
ν(clV − clAγ5)Phliq̄fγν(cqV − c

q
Aγ

5)qi

= −4
√

2πGFα

q2
QlQq(l̄iP−hγ

µlf )
[
l̄fγ

ν(clV − clAγ5)Phli

]
· (q̄iγµqf )

[
q̄fγν(cqV − c

q
Aγ

5)qi
]
.

Summing over all initial and final spins, and using the same tricks as in previous section:

∑
all spins

Mh ∗
γ Mh

NC = −4
√

2πGFα

q2
QlQq

·Tr
[
/kγµ /k′γν(clV − clAγ5)Ph

]
Tr
[
/Pγµ /P

′γν(cqV − c
q
Aγ

5)
]
. (88)

Now we deal with the trace terms. First,

Tr
[
/kγµ /k′γν(clV − clAγ5)Ph

]
= (clV − hclA)2

[
kµk′ν + k′µkν − gµν(k · k′)

]
+ (hclV − clA)kαk

′
β(2i)εµανβ .

By letting h = 0, k → P and k′ → P ′ in the result above and multiply by 2, we obtain

Tr
[
/Pγµ /P

′γν(cqV − c
q
Aγ

5)
]

= (cqV )4
[
PµP

′
ν + P ′µPν − gµν(P · P ′)

]
− cqAP

αP ′β(4i)εµανβ .
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Plugging both trace results into Eq. (88):∑
all spins

Mh ∗
γ Mh

NC

= −4
√

2πGFα

q2
QlQq8

[
(clV − hclA)(kµk′ν + k′µkν − gµνk · k′) + i(hclV − clA)kαk

′
βε
µανβ

]
[
cqV (PµP

′
ν + P ′µPν − gµνP · P ′)− ic

q
AP

αP ′βεµανβ

]
. (89)

Following the same argument as for Eq. (85), some terms on the RHS are always zero after the
implied summation. Furthermore, using εε rule, one obtains∑

all spins

Mh ∗
γ Mh

NC

= −32
√

2πGFα

q2
QlQq

[
(clV − hclA)(kµk′ν + k′µkν − gµνk · k′)cqV (PµP

′
ν + P ′µPν − gµνP · P ′)

+(hclV − clA)kαk
′
βc
q
AP

ρP ′σ(−2)(δαρ δ
β
σ − δβρ δασ )

]
(90)

= −32
√

2πGFα

q2
QlQq

{
2(k · P )(k′ · P ′)

[
clV c

q
V − hc

l
Ac

q
V − hc

q
V c

q
A + clAc

q
A

]
+2(k · P ′)(k′ · P )

[
clV c

q
V − hc

l
Ac

q
V + hcqV c

q
A − c

l
Ac

q
A

]}
. (91)

Plugging in s = 2k · P and u = 2k′ · P = −s(1− y):∑
all spins

Mh ∗
γ Mh

NC

= −32
√

2πGFα

q2
QlQq

{
s2

2

[
clV c

q
V − hc

l
Ac

q
V − hc

l
V c

q
A + clAc

q
A

]
+
u2

2

[
clV c

q
V − hc

l
Ac

q
V + hclV c

q
A − c

l
Ac

q
A

]}
= −16

√
2πGFα

q2
QlQqs

2

×
{

(clV c
q
V − hc

l
Ac

q
V )[1 + (1− y)2] + (−hclV c

q
A + clAc

q
A)[1− (1− y)2]

}
. (92)

D.5 Treatment of antiparticles

We first rewrite Eq. (80) and Eq. (87) using the usual notation u in place of l for the Dirac spinor
of particles:

Mlq
γ,h = −QlQq

4πα

q2
(ūfγ

µPhui)(q̄fγµqi) , (93)

Mlq
NC,h =

√
2GF

[
ūfγ

µ
(
clV − clAγ5

)
Phui

] [
q̄fγµ

(
cqV − c

q
Aγ

5
)
qi
]
. (94)
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For anti-lepton l̄ − q scattering where the intial anti-lepton has helicity h, Eq. (93) becomes

Ml̄q
γ,h = −QlQq

4πα

q2
(v̄iPhγ

µvf )(q̄fγµqi) = −QlQq
4πα

q2
(v̄iγ

µP−hvf )(q̄fγµqi) ,

and Eq. (87) becomes

Ml̄q
NC,h =

√
2GF

[
v̄iPhγ

µ
(
clV − clAγ5

)
vf

] [
q̄fγµ

(
cqV − c

q
Aγ

5
)
qi
]

=
√

2GF

[
v̄iγ

µ
(
clV − clAγ5

)
P−hvf

] [
q̄fγµ

(
cqV − c

q
Aγ

5
)
qi
]
,

where we used γ5γµ = −γµγ5, which gives Phγµ = γµP−h and Phγ5 = γ5Ph. Since the
derivation of Mh ∗

γ Mh
NC stays the same for anti-particles (note that both Eqs. (82) and (84)

remain the same for anti-particle spinor v in the massless limit), we can use lq result [Eq. (91)]
for l̄q with the substitution h → −h and switch the initial vs. the final lepton wavefunction
i ↔ f (or k ↔ k′ since that’s the only thing matters). Starting from Eq. (91) and do the above
required substitutions (h→ −h and k ↔ k′), we have:∑

all spins

Mh ∗
γ Mh

NC(for l̄q)

= −32
√

2πGFα

q2
QlQq

{
2(k′ · P )(k · P ′)

[
clV c

q
V + hclAc

q
V + hcqV c

q
A + clAc

q
A

]
+2(k′ · P ′)(k · P )

[
clV c

q
V + hclAc

q
V − hc

q
V c

q
A − c

l
Ac

q
A

]}
= −32

√
2πGFα

q2
QlQq

{
2(k · P )(k′ · P ′)

[
clV c

q
V + hclAc

q
V − hc

q
V c

q
A − c

l
Ac

q
A

]
+2(k · P ′)(k′ · P )

[
clV c

q
V + hclAc

q
V + hcqV c

q
A + clAc

q
A

]}
(95)

Comparing the above with Eq. (91) we can see that the difference between l̄q and lq can be
equivalently treated as an algebraic flip of the signs of both h and cqA. Using sign flip rather than
switching the 4-momentum vectors allows us to use Eq. (92) directly for anti-particles.

For anti-quarks we have similar results. For l − q̄ scattering, Eq. (80) becomes

Mlq̄
γ,h = −QlQq

4πα

q2
(ūfγ

µPhui)(v̄iγµvf ) ,

and Eq. (87) becomes

Mlq̄
NC,h =

√
2GF

[
ūfγ

µ
(
clV − clAγ5

)
Phui

] [
q̄iγ

µ
(
cqV − c

q
Aγ

5
)
qf
]
,

where the qi,f are Dirac spinors for the initial and the final anti-quark states, respectively. Thus
the only change from the l − q case is i ↔ f (or P ↔ P ′) for the quark states. Starting from
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Eq. (91) and do the substitutions P ↔ P ′,∑
all spins

Mh ∗
γ Mh

NC(for lq̄)

= −32
√

2πGFα

q2
QlQq

{
2(k · P ′)(k′ · P )

[
clV c

q
V − hc

l
Ac

q
V − hc

q
V c

q
A + clAc

q
A

]
+2(k · P )(k′ · P ′)

[
clV c

q
V − hc

l
Ac

q
V + hcqV c

q
A − c

l
Ac

q
A

]}
= −32

√
2πGFα

q2
QlQq

{
2(k · P )(k′ · P ′)

[
clV c

q
V − hc

l
Ac

q
V + hcqV c

q
A − c

l
Ac

q
A

]
+2(k · P ′)(k′ · P )

[
clV c

q
V − hc

l
Ac

q
V − hc

q
V c

q
A + clAc

q
A

]}
(96)

Comparing the above with Eq. (91) we can see that again the difference between lq and lq̄ can
be alternatively treated as a sign flip of cqA.

Lastly for l̄ − q̄ scattering, Eq. (80) becomes

Ml̄q̄
γ,h = −QlQq

4πα

q2
(v̄iPhγ

µvf )(q̄iγµqf ) = −QlQq
4πα

q2
(v̄iγ

µP−hvf )(q̄iγµqf ) ,

and Eq. (87) becomes

Ml̄q̄
NC,h =

√
2GF

[
v̄iPhγ

µ
(
clV − clAγ5

)
vf

] [
q̄iγ

µ
(
cqV − c

q
Aγ

5
)
qf
]

=
√

2GF

[
v̄iγ

µ
(
clV − clAγ5

)
P−hvf

] [
q̄iγ

µ
(
cqV − c

q
Aγ

5
)
qf
]
,

which is lq case with h → −h, k ↔ k′, P ↔ P ′. Once again, starting from Eq. (91) and do
substitutions h → −h, k ↔ k′, P ↔ P ′, and note that the latter two cause no effect in all
k · P ′-like terms:∑

all spins

Mh ∗
γ Mh

NC(for l̄q̄)

= −32
√

2πGFα

q2
QlQq

{
2(k′ · P ′)(k · P )

[
clV c

q
V + hclAc

q
V + hcqV c

q
A + clAc

q
A

]
+2(k′ · P )(k · P ′)

[
clV c

q
V + hclAc

q
V − hc

q
V c

q
A − c

l
Ac

q
A

]}
. (97)

This time, the difference from the lq case can be alternatively treated as a sign flip of h. Similarly
the difference from the l̄q case is a sign flip of cqA.

D.6 Electroweak neutral current cross section asymmetries

In this section we use results from the previous two sections to derive asymmetries of lepton
scattering of opposite helicities or opposite charges.
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D.6.1 PVDIS asymmetry in electron scattering

For cross sectional asymmetry of incident lepton beam of opposite helicities, i.e., PV asymmetry,
both the numerator and the denominator are linear combinations of all quarks reside in the target,
with proper PDF and charge-weighting used. Also, all Mandelstan variables s, u, t are calculated
using Pquark = xPnucleon as interpreted in the infinite momentum frame. The asymmetry is
defined as the difference between right-handed and left-handed incident electron beam:

APV =
σR − σL
σR + σL

=
|MZ +Mγ |2h=+|λ| − |MZ +Mγ |2h=−|λ|

|MZ +Mγ |2h=+|λ| + |MZ +Mγ |2h=−|λ|
≈

2(M∗γMZ)h=+|λ| − 2(M∗γMZ)h=−|λ|

2|Mγ |2

Using Eq. (92) for the numerator and Eq. (86) for the denominator:

APV =

√
2GF q

2

Ql4πα

∑
q(x)Qq

{
2clAc

q
V [1 + (1− y)2] + 2clV c

q
A[1− (1− y)2]

}
|λ|∑

q(x)Q2
q [1 + (1− y)2]

=

√
2GF q

2

Ql4πα

∑
q(x)Qq

[
2clAc

q
V + 2clV c

q
AY (y)

]
|λ|∑

q(x)Q2
q

where λ is the magnitude of the incident beam’s polarization (R−L), q(x) are parton distribution
functions, and the kinematic function Y is defined as

Y (y) ≡ 1− (1− y)2

1 + (1− y)2
. (98)

Plugging in Ql = −1 for electron scattering, Q2 ≡ −q2 and definitions of C1q and C2q:

Ae
−,PVDIS =

√
2GFQ

2

4πα

∑
q(x)Qq [C1q + C2qY (y)] |λ|∑

q(x)Q2
q

. (99)

For a proton target, counting only u, d, c, s quark flavors and use C1c,2c = C1u,2u, C1s,2s =
C1d,2d, and note for antiquark contribution all cqA (and thus all C2q) terms must have an extra
minus sign (see Section D.5), we obtain

Ae
−,PVDIS
p =

|λ|
√

2GFQ
2

4πα

2
3 [u+ + c+]C1u − 1

3 [d+ + s+]C1d + Y [2
3(uV + cV )C2u − 1

3(dV + sV )C2d]
4
9 [u+ + c+] + 1

9 [d+ + s+]

where q+ ≡ q(x) + q̄(x) and qV ≡ q(x)− q̄(x) (q = u, d, c, s). If we assume c = c̄, s = s̄ then
cV = sV = 0 and

Ae
−,PVDIS
p = |λ|

√
2GFQ

2

4πα

2
3 [u+ + c+]C1u − 1

3 [d+ + s+]C1d + Y [2
3uV C2u − 1

3dV C2d]
4
9 [u+ + c+] + 1

9 [d+ + s+]
.(100)

For the deuteron or any isoscalar target but ignoring nuclear effects, substitute u → u + d and
d → u + d in the expression for Ae

−,PVDIS
p above and assuming c and s are the same in the
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proton and the neutron, we obtain:

Ae
−,PVDIS
d = |λ|3GFQ

2

2
√

2πα

2(1 +RC)C1u − (1 +RS)C1d + Y [2C2u(1 + εc)− C2d(1 + εs)]RV
5 + 4RC +RS

,

(101)

where

RV (x) ≡ uV + dV
u+ + d+

, RC(x) ≡ 2(c+ c̄)

u+ + d+
, RS(x) ≡ 2(s+ s̄)

u+ + d+
, (102)

and the ε’s account for c− c̄ and s− s̄ which are often set to zero in PDF sets:

εc ≡
2(c− c̄)
u+ + d+

, εs ≡
2(s− s̄)
u+ + d+

. (103)

If counting only the light quarks u, d then

Ae
−,PVDIS
p ≈ |λ|

√
2GFQ

2

4πα

2
3u

+C1u − 1
3d

+C1d + Y [2
3uV C2u − 1

3dV C2d]
4
9u

+ + 1
9d

+
(104)

Ae
−,PVDIS
d ≈ |λ| 3GFQ

2

10
√

2πα
[(2C1u − C1d) +RV Y (2C2u − C2d)] . (105)

D.6.2 Asymmetry between electron and positron scattering

For the difference between electron and positron scattering, we can define:

Ae
+e−
RL ≡

σe
+

R − σe
−
L

σe
+

R + σe
−
L

, Ae
+e−
LR ≡

σe
+

L − σe
−
R

σe
+

R + σe
−
L

, (106)

Ae
+e−
LL ≡

σe
+

L − σe
−
L

σe
+

L + σe
−
L

, Ae
+e−
RR ≡

σe
+

R − σe
−
R

σe
+

R + σe
−
R

, (107)

and

Ae
+e− ≡

σe
+

h=0 − σe
−
h=0

σe
+

h=0 + σe
−
h=0

. (108)

Note that asymmetries in Eqs. (106) and (107) were called B or B+ in Ref. [18, 72] and CL,R
in Ref. [72], respectively.

Calculations of Ae
+e−
RL require:

Ae
+e−
RL =

|Me+

Z +Me+
γ |2h=+|λ| − |M

e−
Z +Me−

γ |2h=−|λ|

|Me+
Z +Me+

γ |2h=+|λ| + |M
e−
Z +Me−

γ |2h=−|λ|

≈
2(Me+∗

γ Me+

Z )h=+|λ| − 2(Me−∗
γ Me−

Z )h=−|λ|

2|Mγ |2
,
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where the approximation is valid for Q2 � M2
Z . Again we use Eq. (86) for the numerator and

Eq. (92) for the numerator (omitting the summation sign):

(
MZ

hM
γ∗
h

)eq
= −16

√
2παGFQlQq

q2
s2

×
{

(clV c
q
V − hc

l
Ac

q
V )[1 + (1− y)2] + (−hclV c

q
A + clAc

q
A)[1− (1− y)2]

}
,

and recall for e+ − q scattering we flip the signs of both h and cqA (see Section D.5):

(
MZ

hM
γ∗
h

)e+q
= −16

√
2παGFQlQq

q2
s2

×
{

(clV c
q
V + hclAc

q
V )[1 + (1− y)2] + (−hclV c

q
A − c

l
Ac

q
A)[1− (1− y)2]

}
,

we obtain:

(M∗γMZ)e
+q
h=+|λ| − (M∗γMZ)e

−q
h=−|λ|

= −16
√

2παGFQlQq
q2

s2

×
{

(clV c
q
V + |λ|clAc

q
V )[1 + (1− y)2] + (−|λ|clV c

q
A − c

l
Ac

q
A)[1− (1− y)2]

−(clV c
q
V + |λ|clAc

q
V )[1 + (1− y)2]− (+|λ|clV c

q
A + clAc

q
A)[1− (1− y)2]

}
(109)

where the first line in the wiggly bracket are from e+ and the second line is from e−. The V V
and AV terms cancel out between the two, while the V A and AA terms are identical. Plugging
in Ql = −1 for the electron, we are left with:

(M∗γMZ)e
+q
h=+|λ| − (M∗γMZ)e

−q
h=−|λ| = −

16
√

2παGFQq
q2

s2(2|λ|clV c
q
A + 2clAc

q
A)[1− (1− y)2] .

Conversely, if we form the RR asymmetry then the V V and V A terms cancel while AV and
AA terms are identical, leaving only the AV and AA terms:

(M∗γMZ)e
+q
h=+|λ| − (M∗γMZ)e

−q
h=+|λ|

= −16
√

2παGFQlQq
q2

s2

×
{

(clV c
q
V + |λ|clAc

q
V )[1 + (1− y)2] + (−|λ|clV c

q
A − c

l
Ac

q
A)[1− (1− y)2]

−(clV c
q
V − |λ|c

l
Ac

q
V )[1 + (1− y)2]− (−|λ|clV c

q
A + clAc

q
A)[1− (1− y)2]

}
=

16
√

2παGFQq
q2

s2
{

2|λ|clAc
q
V [1 + (1− y)2]− 2clAc

q
A[1− (1− y)2]

}
. (110)

For LL one simply flip the sign of |λ| above.
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For e+ vs. e− scattering off a nuclear target, , and note for antiquark contribution all cqA (and
thus all C2q,3q) terms must have an extra minus sign (see Section D.5), we have

Ae
+e−
RL =

∑
q −

16
√

2παGF
q2

s2[1− (1− y)2]Qq[2|λ|clV c
q
A + 2clAc

q
A] (q(x)− q̄(x))∑

q 4Q2
l

(
4πα
q2

)2
s2[1 + (1− y)2]Q2

q (q(x) + q̄(x))
.(111)

Plugging in Q2
l = 1, C2q ≡ 2clV c

q
A, C3q = −2clAc

q
A, and q2 = −Q2:

Ae
+e−
RL =

GF

2
√

2πα
Q2Y (y)

∑
q qV (x)Qq(|λ|C2q − C3q)∑

q q
+(x)Q2

q

. (112)

For the proton and considering u, d, c, s

Ae
+e−
RL,p =

3GF

2
√

2πα
Q2Y (y)

2|λ|(uV + cV )C2u − |λ|(dV + sV )C2d − 2(uV + cV )C3u + (dV + sV )C3d

4(u+ + c+) + 1(d+ + s+)
.

If we assume c = c̄, s = s̄ then cV = sV = 0 and

Ae
+e−
RL,p =

3GF

2
√

2πα
Q2Y (y)

2|λ|uV C2u − |λ|dV C2d − 2uV C3u + dV C3d

4(u+ + c+) + (d+ + s+)
. (113)

For the deuteron or any isoscalar target and ignoring nuclear effects:

Ae
+e−
RL,d =

3GF

2
√

2πα
Q2Y (y)RV

|λ|(2C2u − C2d)− (2C3u − C3d)

5 + 4RC +RS
. (114)

And if only u, d are considered then

Ae
+e−
RL,p ≈ 3GF

2
√

2πα
Q2Y (y)

2|λ|uV C2u − |λ|dV C2d − 2uV C3u + dV C3d

4(u+) + (d+)
. (115)

Ae
+e−
RL,d ≈ 3GF

10
√

2πα
Q2Y (y)RV [|λ|(2C2u − C2d)− (2C3u − C3d)] . (116)

All results above can be extended to Ae
+e−
LR if we let |λ| → −|λ|, and to Ae

+e− if we let |λ| = 0.

For Ae
+e−
RR,LL, we start from Eq. (110):

Ae
+e−
RR =

GF

2
√

2πα
Q2Y (y)

∑
q Qq(−q+|λ|C1q − Y qV C3q)∑

q q
+Q2

q

. (117)

For the proton and considering u, d, c, s

Ae
+e−
RR,p =

3GF

2
√

2πα
Q2

× −2|λ|(u+ + c+)C1u + |λ|(d+ + s+)C1d − 2(uV + cV )C3uY (y) + (dV + sV )C3dY (y)

4(u+ + c+) + 1(d+ + s+)
.

(118)
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If we assume c = c̄, s = s̄ then cV = sV = 0 and

Ae
+e−
RR,p =

3GF

2
√

2πα
Q2−2|λ|(u+ + c+)C1u + |λ|(d+ + s+)C1d − 2uV C3uY (y) + dV C3dY (y)

4(u+ + c+) + (d+ + s+)
.

(119)

For the deuteron or any isoscalar target and ignoring nuclear effects:

Ae
+e−
RR,d =

3GF

2
√

2πα
Q2−|λ|[2(1 +RC)C1u − (1 +RS)C1d]− Y (y)RV (2C3u − C3d)

5 + 4RC +RS
.(120)

And if only u, d are considered then

Ae
+e−
RR,p ≈ 3GF

2
√

2πα
Q2−2|λ|u+C1u + |λ|d+C1d − 2uV C3uY (y) + dV C3dY (y)

4(u+) + (d+)
. (121)

Ae
+e−
RR,d ≈ 3GF

10
√

2πα
Q2 [−|λ|(2C1u − C1d)− Y (y)RV (2C3u − C3d)] . (122)
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