JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • Exploring the Nature of Matter

    Plans and proposals for the next, great physics machine for studying the intrinsic bits of everyday matter are starting to form. The proposed Electron-Ion Collider could ensure that the cutting-edge science that has kept Jefferson Lab and the United States at the frontier of nuclear physics research for 25 years will continue for decades to come.

  • The next large nuclear physics research facility being proposed to the DOE for construction is an Electron-Ion Collider (EIC). An EIC could provide unique capabilities for the study of Quantum Chromodynamics (QCD), the theory that describes how quarks and gluons build protons, neutrons and nuclei. In March 2013, NSAC ranked an EIC as “absolutely central” in its ability to contribute to world-leading science research. Two facilities, Jefferson Lab and Brookhaven National Lab in New York, are developing facility concepts.

  • A Jefferson Lab EIC would accelerate two beams of sub-atomic particles to nearly the speed of light before slamming the beams together. A stream of electrons and a stream of protons or ions would collide at two interaction points. These interaction points will be surrounded by large detectors, which will record the results of these interactions for scientists to interpret.

  • Building an Electron-Ion Collider at Jefferson Lab would capitalize on the lab’s existing Continuous Electron Beam Accelerator Facility and on the lab’s expertise in designing and building particle accelerators. The essential new elements of an EIC facility at Jefferson Lab would include an electron storage ring and an entirely new, modern ion acceleration and storage complex that would be constructed in a large-scale civil engineering project.

  • The Electron-Ion Collider is considered to be essential to the United States’ ability to contribute to world-leading scientific research. Researchers hope such a machine can help answer fundamental questions about ordinary matter, revealing for the first time and in detail how matter’s smallest building blocks and nature’s universal forces combine to build our visible universe.

  • Nuclear physicists are using software-based streaming readout systems to analyze holistic data in a fraction of the usual time.

  • New experimental techniques using a "density ladder" are creating a consistent picture of the exotic structure of neutron star interiors.

  • A unique experiment reveals new details about the nuanced, short-distance interactions between and neutrons in nuclei.

  • European physicists are conducting experiments that predict bigger neutron star sizes.

  • LET'S BE CLEAR

    When writing, clarity is essential. If writing is unclear, the reader may become confused or frustrated, which may lead them to stop reading altogether. Using ambiguous words, or words that have more than one meaning, without clarification can make writing unclear. Pronouns like “their” or “it” are commonly ambiguous, as the following illustrates: “The project managers report potential risks and suggest approaches according to their guidelines.” What does “their” refer to? The project managers’ guidelines? The guidelines of the approaches? A simple rewording can clarify: “…managers report potential risks and, according to their guidelines, suggest approaches….” 

    Disconnected or oddly arranged wording also may cause a lack of clarity. In the following example, watch for the confusion over what took place and where: “The athlete said she and her team mutually agreed to part ways in an online video.” Does the video show the team agreeing to part ways or just the athlete announcing it happened? If the latter, then moving the “video posted” phrase would clarify: “In an online video, the athlete said….” 

    Looking carefully for ambiguities and removing them can sharpen your writing — and sharp writing keeps readers reading. For questions, contact Dave Bounds at x2859 (virtual office hours: Tuesday and Thursday, 9-11 a.m.). Happy writing!

    Category