JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • Resources Lander Links

  • Careers Lander Links

  • Research Lander Links

  • About Lander Links

  • coming soon

  • Thomas Jefferson National Accelerator Facility (Jefferson Lab) provides scientists worldwide the lab’s unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), to probe the most basic building blocks of matter by conducting research at the frontiers of nuclear physics (NP) and related disciplines. In addition, the lab capitalizes on its unique technologies and expertise to perform advanced computing and applied research with industry and university partners, and provides programs designed to help educate the next generation in science and technology.

    Majority of computational science activities in Jefferson Lab focus on these areas : large scale and numerical intensive Lattice Quantum Chromodynamics (LQCD) calculations, modeling and simulation of accelerators and the experiment detectors, fast data acquisition and streaming data readout, high throughput computing for data analysis of experimental data, and large scale distributed data storage and management.

    Many Jefferson Lab scientists and staffs lead or actively participate the computational efforts in the above areas. Among those are computer/computational scientists and computer professionals from newly formed computational sciences and technology division (CST), physicists from physics division and the Center for Theoretical and Computational Physics, and accelerator physicists from Center for Advanced Studies of Accelerators (CASA). In addition, collaborations with universities and industrial partners further research and development in computational science.

    Jefferson Lab maintains various state of art high performance computing resources onsite. CSGF students will utilize these resources to carried out their researches in the specific areas described below:

    Accelerator Modeling

    CASA and Jefferson Lab SRF institute focus on advanced algorithms, such as fast multipole methods, for multiparticle accelerator dynamics simulations, artificial intelligence (AI) and machine learning (ML) applied to superconducting RF (SRF) accelerator operations, and integrated large and multi-scale modeling of SRF accelerator structures. These areas will be an essential part of a national strategy to optimize DOE operational facility investments, and to strengthen Jefferson Lab’s core competency of world-leading SRF advanced design and facility operations. Especially, current active simulation projects

    like electron cooling, intra-beam scattering, and coherent synchrotron radiation present diverse research domains ranging from numerical algorithms development to parallel computing.

    Streaming Data Readout

    With tremendous advancement in micro-electronics and computing technologies in the last decade, many nuclear physics and high-energy physics experiments are taking advantage of these developments by upgrading their existing triggered data acquisition to a streaming readout model (SRO) , whereby detectors are continuously read out in parallel streams of data. An SRO system, which could handle up to 100 Gb/s data throughput, provides a pipelined data analysis model to nuclear physics experiments where data are analyzed and processed in near real-time fashion. Jefferson Lab is leading a collaborative research and development effort to devise SRO systems not only for CEBAF 12GeV experiments but also for the upcoming EIC facility. SRO development offers CSGF students some exciting research areas such as network protocol design, high speed data communication, high performance data compression and distributed computing.

    Physics Data Analysis

    Analysis of data from modern particle physics experiments uses technically advanced programming and computing techniques to handle the large volumes of data. One not only needs to understand aspects of parallel programming using modern languages such as C/C++, Java, and Python, but also must incorporate knowledge of experimental techniques involving error propagation and estimation in order to properly interpret the results. Aspects of this range from writing a single algorithm used in event reconstruction, to using the collection of algorithms written by others, to managing campaigns at HPC facilities that apply these algorithms to large datasets. Detector calibrations and final physics analysis are also significant parts of the analysis chain. CSGF students could participate in any of these areas.

    Machine Learning

    Rapid developments in hardware computational power and an ever increasing set of data has lead to explosive growth in machine learning techniques, specifically deep learning techniques. These techniques threaten to change just about every facet of modern life and nuclear physics is no exception. At Jefferson Lab machine learning is being developed for every step in the physics workflow. To deliver beam to the experimental halls the accelerator relies on radio frequency (RF) cavities to accelerate the electrons. Occasionally these cavities, of which there are over 400 in operation around the accelerator, fault which disrupts the delivery of the beam to experiments. To quickly identify and diagnose cavity faults A.I. is being developed and deployed. Experiments themselves are developing and/or deploying A.I. to monitor detector performance, decide what data to keep, reconstruct detector responses, simulate the detectors, and even to analyze collected data. With the active development of machine learning tools and techniques Jefferson Lab hopes to drive nuclear physics research forward, enabling physicists to more quickly obtain and analyze high quality data.

    • Start typing the title of a piece of content to select it.
    • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    3. You can also enter an internal path such as /node/add or an external URL
    • Start typing the title of a piece of content to select it.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. You can also enter an internal path such as /node/add or an external URL
  • Computational Sciences and Technology (CST) Division

  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    Accelerator Operator 13403 Technology
    Vacuum Engineer 13396 Engineering
    Geant4 Developer 13214 Computer
    Survey & Alignment Technician (Metrology) 13385 Misc./Trades
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    Master HVAC Technician 13367 Misc./Trades
    Data Center Operations Manager 13327 Engineering
    Radiation Control Technician 13391 Technology
    Communications Office Student Intern 13310 Public Relations
    Fusion Project Technician 13389 Misc./Trades
    Mechanical Engineer III 13140 Engineering
    Project Controls Analyst 13302 Clerical/Admin
    Gaseous Detector Support Staff Engineer 13400 Engineering
    RadCon Manager 13337 Environmental Safety
    Magnet Group Staff Engineer 13370 Engineering
    IT Project Manager 13340 Clerical/Admin
    Storage Solutions Architect 13238 Computer
    User Support Technician I 13405 Computer
    HPDF Project Director 13373 Computer
    Cybersecurity Student Intern 13406 Computer
    MIS Application Server Administrator 13394 Computer
    Deputy CNI Manager 13378 Computer
    ES&H Department Head 13338 Engineering
    MPGD Development Physicist 13381 Science
    DC Power Group Leader 13380 Engineering
    Data Acquisition Scientist 13404 Computer
    Sustainability Engineer (Electrical) 13364 Engineering
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    Administrative Assistant - Electron Ion Collider Project 13375 Clerical/Admin
    CIS Postdoctoral Fellow 13102 Science
    Scientific Data and Computing Department Head 13383 Computer
    Lead Magnet Engineer 13366 Engineering
    SRF Accelerator Physicist 13359 Science

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • Yulia Furletova - Nuclear Physicist

      Love of physics grows in tiny town with big impact

      Tucked into the small town of Dubna, Russia, is the Joint Institute for Nuclear Research. Approximately 7,000 of the town’s 75,000 residents work as staff members or researchers at the institute—or about one in every ten residents living in the town. It was in this environment infused with a focus on nuclear physics that Jefferson Lab Staff Scientist Yulia Furletova was raised.

      “I never worked at the institute and neither did my parents, but because it was this tiny city that I grew up in, I think the institute made some impact in my life, and that’s why I became a scientist and picked the field of nuclear and particle physics,” says Furletova. “I lived in Dubna until I was 17 years old.”

      When it was time for her to go to university, Yulia moved to Moscow, where she earned her undergraduate and graduate degrees in engineering and high energy particle physics.

      “After Moscow, I moved to Hamburg, Germany, for my Ph.D., and that was the beginning of my research adventure,” she recalls. “I lived in Germany for 15 years participating in experiments around the globe, including at DESY, CERN and KEK.”

      “It’s really hard for families who have both of their parties working in the same field to find a position in the same city,” she says. “At that time, when my husband, who is also a physicist, got a job at Jefferson Lab and our family moved from Germany to Newport News, Virginia, I had a toddler and another child, so I decided to spend some time at home with them”

      After spending only a few months as a stay-at-home mom, a position opened at Jefferson Lab, and she took advantage of the opportunity to return to nuclear physics research. She applied for this position and was accepted to work on development of the Electron-Ion Collider.

      “Originally, when I was a child, I wanted to study astronomy,” says Furletova. “I was interested in outer space and the universe—and I was especially interested in black holes. Later, I realized that the sub-atomic world is also as large and unknown as outer space. What we can see at accelerator and particle facilities brings us very close to what we see in the Big Bang. At the lab, we’re trying to understand the nature of mass and the origin of different particles, what they’re made out of, and what binds them all together.”

      Furletova is particularly interested in studying exotic particles, which are particles that appear to violate the laws of physics. Such an interest requires her to first have extensive knowledge of the laws of physics and experiment to better make sense of results that do not necessarily follow particular prescriptions.

      “We have a Standard Model theory that describes the universal laws. But there are some questions that this theory can’t answer,” she says. “I’m an experimental physicist, and as an experimental physicist, you have to understand the whole process—the theory of how particles emerge, how these particles interact with the detector materials, how to process the output data from those detectors. You have to have understand the whole chain—not just knowledge of the tiny corners.”

      Right now, Furletova is developing experiments with collaborators that will help to reveal the secrets of nature. The modeling and construction of the equipment and facilities needed for such experiments can take years and decades before experiments can be performed.

      “Running a simulation to test our theories is not enough,” says Furletova. “We need experimental data. We need precise detectors, fast electronics and advanced data analysis methods. Right now, we are developing a new future electron-ion collider and detectors to help us to learn more. It is a really long, complex and difficult process and can involve thousands of scientists from hundreds of institutions around the world. It’s a global effort of accelerator scientists, theoreticians and experimentalists working together toward the same goal.”

      Furletova is involved in the research and development program (R&D) for new advanced detectors. She is performing simulation of physics processes to optimize detector capabilities, and to enhance the physics program.

      In addition, Furletova is helping to educate the young scientists who she knows will one day take over where she leaves off, just as she has followed in the scientific footsteps of nuclear physicists in the town in Dubna.

      “We have several students in our group now, so we can work together and educate the next generation of experimentalists,” she says. “The first collision at the electron-ion collider will be in ten years, so we need to make sure that young scientists will be ready to analyze that new data.”

      How does this next generation of physicists compare to Furletova’s contemporaries?

      “The young generation is really smart,” she says. “And they are picking things up really quickly. They have a lot of good ideas and computer experience.”

      Learn more about Yulia Furletova and her work
      EIC Status – Detector and Simulations 
      SMU Physics Department Speaker Series – Yulia Furletova

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Pashupati Dhakal
      Pashupati Dhakal
      Accelerator Operations

      "Not every day is the same day. Working in research and development, it’s not a one person job."

    • Jian-Ping Chen
      Jian-Ping Chen
      Senior Staff Scientist

      “Every time we solve problems, we contribute. It’s exciting times for new results and discoveries.”

    • Ashley Mitchell
      Ashley Mitchell
      SRF Chemistry Technician

      “Chemistry is the art of science and art; you’re manipulating and creating things. We have lots of different recipes to work with.”

    • Jianwei Qiu
      Jianwei Qiu
      Associate Director For Theoretical And Computational Physics

      "My own research enables me to better lead the Theory Center, to lead our collaboration, to provide good guidance to our junior researchers on the team, and to provide valuable input to the advisory and review committees that I serve"

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.