JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • coming soon

  • Thomas Jefferson National Accelerator Facility (Jefferson Lab) provides scientists worldwide the lab’s unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), to probe the most basic building blocks of matter by conducting research at the frontiers of nuclear physics (NP) and related disciplines. In addition, the lab capitalizes on its unique technologies and expertise to perform advanced computing and applied research with industry and university partners, and provides programs designed to help educate the next generation in science and technology.

    Majority of computational science activities in Jefferson Lab focus on these areas : large scale and numerical intensive Lattice Quantum Chromodynamics (LQCD) calculations, modeling and simulation of accelerators and the experiment detectors, fast data acquisition and streaming data readout, high throughput computing for data analysis of experimental data, and large scale distributed data storage and management.

    Many Jefferson Lab scientists and staffs lead or actively participate the computational efforts in the above areas. Among those are computer/computational scientists and computer professionals from newly formed computational sciences and technology division (CST), physicists from physics division and the Center for Theoretical and Computational Physics, and accelerator physicists from Center for Advanced Studies of Accelerators (CASA). In addition, collaborations with universities and industrial partners further research and development in computational science.

    Jefferson Lab maintains various state of art high performance computing resources onsite. CSGF students will utilize these resources to carried out their researches in the specific areas described below:

    Accelerator Modeling

    CASA and Jefferson Lab SRF institute focus on advanced algorithms, such as fast multipole methods, for multiparticle accelerator dynamics simulations, artificial intelligence (AI) and machine learning (ML) applied to superconducting RF (SRF) accelerator operations, and integrated large and multi-scale modeling of SRF accelerator structures. These areas will be an essential part of a national strategy to optimize DOE operational facility investments, and to strengthen Jefferson Lab’s core competency of world-leading SRF advanced design and facility operations. Especially, current active simulation projects

    like electron cooling, intra-beam scattering, and coherent synchrotron radiation present diverse research domains ranging from numerical algorithms development to parallel computing.

    Streaming Data Readout

    With tremendous advancement in micro-electronics and computing technologies in the last decade, many nuclear physics and high-energy physics experiments are taking advantage of these developments by upgrading their existing triggered data acquisition to a streaming readout model (SRO) , whereby detectors are continuously read out in parallel streams of data. An SRO system, which could handle up to 100 Gb/s data throughput, provides a pipelined data analysis model to nuclear physics experiments where data are analyzed and processed in near real-time fashion. Jefferson Lab is leading a collaborative research and development effort to devise SRO systems not only for CEBAF 12GeV experiments but also for the upcoming EIC facility. SRO development offers CSGF students some exciting research areas such as network protocol design, high speed data communication, high performance data compression and distributed computing.

    Physics Data Analysis

    Analysis of data from modern particle physics experiments uses technically advanced programming and computing techniques to handle the large volumes of data. One not only needs to understand aspects of parallel programming using modern languages such as C/C++, Java, and Python, but also must incorporate knowledge of experimental techniques involving error propagation and estimation in order to properly interpret the results. Aspects of this range from writing a single algorithm used in event reconstruction, to using the collection of algorithms written by others, to managing campaigns at HPC facilities that apply these algorithms to large datasets. Detector calibrations and final physics analysis are also significant parts of the analysis chain. CSGF students could participate in any of these areas.

    Machine Learning

    Rapid developments in hardware computational power and an ever increasing set of data has lead to explosive growth in machine learning techniques, specifically deep learning techniques. These techniques threaten to change just about every facet of modern life and nuclear physics is no exception. At Jefferson Lab machine learning is being developed for every step in the physics workflow. To deliver beam to the experimental halls the accelerator relies on radio frequency (RF) cavities to accelerate the electrons. Occasionally these cavities, of which there are over 400 in operation around the accelerator, fault which disrupts the delivery of the beam to experiments. To quickly identify and diagnose cavity faults A.I. is being developed and deployed. Experiments themselves are developing and/or deploying A.I. to monitor detector performance, decide what data to keep, reconstruct detector responses, simulate the detectors, and even to analyze collected data. With the active development of machine learning tools and techniques Jefferson Lab hopes to drive nuclear physics research forward, enabling physicists to more quickly obtain and analyze high quality data.

    • Start typing the title of a piece of content to select it.
    • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    3. You can also enter an internal path such as /node/add or an external URL
    • Start typing the title of a piece of content to select it.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. You can also enter an internal path such as /node/add or an external URL
  • Computational Sciences and Technology (CST) Division

  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    Data Center Operations Manager 13327 Engineering
    RadCon Manager 13337 Environmental Safety
    Electrical Engineer (Sustainability) 13364 Engineering
    HPDF Project Director 13373 Computer
    Accounts Payable Assistant 13397 Accounting
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    SRF Accelerator Physicist 13359 Science
    Project Services and Support Office Manager 13330 Management
    Radiation Control Technician 13391 Technology
    Magnet Group Staff Engineer 13370 Engineering
    CIS Postdoctoral Fellow 13102 Science
    DC Power Group Leader 13380 Engineering
    IT Project Manager 13340 Clerical/Admin
    SRF Production Chemistry Supervisor 13386 Technology
    Communications Office Student Intern 13310 Public Relations
    Scientific Data and Computing Department Head 13383 Computer
    Master HVAC Technician 13367 Misc./Trades
    Hall A Technologist/Design Drafter 13285 Engineering
    MPGD Development Physicist 13381 Science
    Deputy CNI Manager 13378 Computer
    Project Controls Analyst 13302 Clerical/Admin
    Finance Business Manager 13365 Accounting
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    Storage Solutions Architect 13238 Computer
    Mechanical Engineer III 13140 Engineering
    ES&H Department Head 13338 Engineering
    Lead Magnet Engineer 13366 Engineering
    Vacuum Engineer 13396 Engineering
    ES&H Inspection Program Lead 13323 Environmental Safety
    Geant4 Developer 13214 Computer
    Multimedia Intern 13215 Public Relations
    Survey and Alignment Technician (Metrology) 13385 Misc./Trades
    DC Power Systems Electrical Engineer 13371 Engineering
    Fusion Project Technician 13389 Misc./Trades
    Human Resources Outreach Specialist 13376 Human Resources

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • Kevin Jordan - Electrical Engineer

      Creativity and engineering make possible new art and cutting-edge nanotube technology

      If you attended the famous Burning Man festival in 2018, you may have seen a giant, kinetic art installation co-built by Kevin Jordan, a Jefferson Lab electrical engineer. Jordan and George Neil, his former supervisor at the lab, have been traveling North America showcasing their namesake Double Helix Art installations, which feature a double helix light apparatus held high in the air.

      Jordan and Neil’s mesmerizing work is a kinetic sculpture that is comprised of two parallel steel cables that are attached to a pair of steel pipes rigged up to 75 feet apart and suspended 32 feet in the air. Long poles are attached perpendicularly to the two steel cables in intervals resembling ribs. Those long poles stretch for several feet and at the end of each pole is a colorful lightbulb. When the artwork is still, it slightly resembles an elevated train track.

      “Basically, this is a scaled-up version of a wave machine from a STEM educator in Malaysia,” explains Jordan. “Their jelly babies and kabob sticks are equivalent to our steel pipes and LEDs. The disturbance goes from one end of the machine to the other. Visitors can experiment by pulling on two ropes, which puts energy into the cables on one end of the machine and seeing how that energy propagates the waves all the way down the machine and reflects back.”

      The wave “frequency” speeds or slows and changes the height of the wave crest in response to the way a visitor interacts with the ropes. However, the system does not have to be interactive and can run off of a motor instead of human power.

      Jordan and Neil call their work and corresponding partnership “Double Helix Art.” In addition to Burning Man, they have thus far showcased it at the Toronto Distillery District, at the Olbrich Botanical Gardens in Madison, Wisconsin, and at the Virginia Living Museum and at Brooks Crossing in Newport News.

      Through their art, Jordan and Neil have connected with other institutions to make public art possible. Read more about Jordan’s work to make an installation possible at Christopher Newport University.

      Creativity also leads to scientific advancements

      Jordan’s creativity extends far beyond his interest in kinetic art. He also applies creative approaches to his work at Jefferson Lab as lead for the Diagnostics Development group in the lab’s Center for Advanced Studies of Accelerators.

      “We are responsible for improving the diagnostics for the CEBAF electron accelerator. We have been focusing on non-invasive instruments that can both serve as an early warning of a problem and to better resolve issues with a goal of reducing accelerator downtime,” he says.

      He’s also working on a project to adapt commercial microwave transmitters for use at the lab. Currently, the lab uses specially designed klystrons to inject power into the components that accelerate the electron beams in CEBAF. Using commercially available transmitters instead can reduce the cost of building or upgrading particle accelerators in the future.

      “I have also been coordinating the testing of new LCLS-II cryomodules at the LERF facility, supporting the Gun Test Stand, and have done the control system for bunched electron cooling of carbon ion beam at the Institute of Modern Physics in Lanzhou China,” he says.

      Jordan rounds out his work duties with service-oriented tasks. He currently serves on the Machine Advisory Committee for the Canadian Light Source in Saskatoon, Canada, the Scientific Program Committee for the International Beam Instrument Conference, and is the chair of the Accelerator Division seminar committee.

      And applied technologies, too

      Jordan also has helped to invent a brand new, cutting-edge material that is stronger than Kevlar, electrically insulating, and thermally conductive. This new material, boron nitride nanotubes, is the focus of Jordan’s Jefferson Lab spin-off business: BNNT Materials.

      “We make a volatile mix of super corrosive gasses and vapors, and when they condense out with the right conditions, they make these beautiful crystalline structures,” explains Jordan.  

      The structures can be treated as a fiber, similar to a cotton ball.

      “We stretch it into long fibers and then spin those lengths of fibers together,” explains Jordan. “On a molecular level, the Van der Waals forces will hold the fibers together in an extremely strong bond.”

      What exactly will the BNNT technology be used for outside of the lab?

      “We are a solution looking for a problem,” says Jordan, who has his name on 39 total patents. “We can solve all kinds of problems.”

      For instance, the material can be used in thermal applications to manage heat in computer chips and electric vehicles or even high-flying electric aircraft engines. It can enhance the mechanical properties of metals, ceramics and polymer composites. Another application for the technology is as a photocatalyst for water treatment facilities.

      “Perfluorooctanoic acid (PFOA) is in the news more and more for being in household products like Scotchguard,” says Jordan. “PFOA is a long chain that doesn’t break down for 10,000 years, and in trace levels, it could cause ill effects. It’s also used in firefighter foam, and many military training sites are PFOA contamination sites. We have researchers at Naval Air Weapons Station China Lake and Rice University that have found that our nanotubes, along with the presence of ultraviolet light, will break these chemicals down.”

      BNNT is also hydrophobic, which has proven to be an attractive quality in the use of self-cleaning materials and coatings.

      While Jordan awaits the next phase of BNNT and the next art installation project, he stays busy managing the hardscaping, landscaping and aqua scaping at his home, keeps three bee boxes, engineers yard decorations to delight the neighborhood children, gardens and grows various strains of fungi.

      Learn More About Kevin Jordan
      Double Helix Art YouTube channel
      Jefferson Lab Engineer Partners with CNU for Kinetic Art Installation
      Jefferson Lab Engineer Honored with NASA Invention Award
      Daily Press: Jefferson Lab to Hold Another Rare Open House
      FEL Work Earns State Environmental Award
      Experiment Generates THz Radiation 20,000 Times Brighter Than Anyone Else

      By Carrie Rogers

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Jian-Ping Chen
      Jian-Ping Chen
      Senior Staff Scientist

      “Every time we solve problems, we contribute. It’s exciting times for new results and discoveries.”

    • Ashley Mitchell
      Ashley Mitchell
      SRF Chemistry Technician

      “Chemistry is the art of science and art; you’re manipulating and creating things. We have lots of different recipes to work with.”

    • Katherine Wilson
      Katherine Wilson
      Staff Engineer

      “Generally, the mechanical engineers at the lab support the physicists. The physicists have the big ideas about how to support new science, and the engineers figure out how to make that happen.”

    • Jianwei Qiu
      Jianwei Qiu
      Associate Director For Theoretical And Computational Physics

      "My own research enables me to better lead the Theory Center, to lead our collaboration, to provide good guidance to our junior researchers on the team, and to provide valuable input to the advisory and review committees that I serve"

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.

  • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    PB Titie here blah blah

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock,

  •  jnfslk nflk gnfdlgd

    NEW POLICY  - PLEASE READ!!!!  fgsdf sdfsdfsdf sdf sd fsdf fgdf fd gdf gdf

     

     yj tj tujytjty

    thumb image of map for parking

    • sd mvnw vnwdfovn wfvnnl vw nov wov
      • no vnowsd mvnw vnwdfovn wfvnnl vw nov w
      • ovno vnowsd mvnw vnwd
      • fovn wfvnnl vw nov wovno vnowsd m
        • vnw vnwdfovn wfvnnl vw nov
        • wovno vnowsd mvnw vnwdfov
        • n wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw
        • nov wovno vn
    • owsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnow

    erterter tret ert er ter t

    sfgdg dfg dfgdfg dfgdfg dfgdfgdfgff gdfgdfg dfgdfg dfgdfg dfgdf dfgdfg
                     
                     
                     
                     
                     
                     

    sd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vno

    gertgertretertertert et ret ert 

    kjhkjhkjhkjhkjhk njh hhn fh gdhgf h

    sd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnow

    • Femtocenter.org website: maintenance and updates to standalone website. This includes added costs for security and platform updates. Work is verified by the webmaster and processed directly through JSA to the lab’s Drupal CMS contractor.  
    • HPDF website: maintenance and updates to standalone website. This includes added costs for security and platform updates. Work is verified by the webmaster and processed directly through HPDF to the lab’s Drupal CMS contractor

    Web server support. Work with the CST division to maintain, update and upgrade existing file servers that interact with the lab’s websites. Submit Service Now tickets and follow up on them when web servers need upgrades or