JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • About - Events

    Events at JLab
  • About - Brochures

    Brochures, Posters and Fact Sheets
  • About - Visiting the Lab

    Visiting the Lab
  • About - Science at JLab

    Science at JLab
  • LET'S BE CLEAR

    When writing, clarity is essential. If writing is unclear, the reader may become confused or frustrated, which may lead them to stop reading altogether. Using ambiguous words, or words that have more than one meaning, without clarification can make writing unclear. Pronouns like “their” or “it” are commonly ambiguous, as the following illustrates: “The project managers report potential risks and suggest approaches according to their guidelines.” What does “their” refer to? The project managers’ guidelines? The guidelines of the approaches? A simple rewording can clarify: “…managers report potential risks and, according to their guidelines, suggest approaches….” 

    Disconnected or oddly arranged wording also may cause a lack of clarity. In the following example, watch for the confusion over what took place and where: “The athlete said she and her team mutually agreed to part ways in an online video.” Does the video show the team agreeing to part ways or just the athlete announcing it happened? If the latter, then moving the “video posted” phrase would clarify: “In an online video, the athlete said….” 

    Looking carefully for ambiguities and removing them can sharpen your writing — and sharp writing keeps readers reading. For questions, contact Dave Bounds at x2859 (virtual office hours: Tuesday and Thursday, 9-11 a.m.). Happy writing!

    Category
  • WATCH YOUR TONE!

    All writing has a voice, which is often referred to as “tone.” Word choice and order, sentence and paragraph length and even punctuation are all factors that contribute to someone’s tone.

    A tone may be authoritative, conversational, scientific, diplomatic and so on. In these examples, note how all are saying essentially the same thing in varying tones:

    • The following documentation presents a full explanation of the incident as requested.
    • You’ll find everything that happened below.
    • To understand the incident, read on. All details are accounted for.

    There are several ways to write the same sentence and just as many ways to convey tone. Which of the above sounds like a professional statement? An informal comment? The answers reveal themselves in the details.

    When put together, words like “documentation” and “explanation” give an official tone. Personalized wording like “you’ll find” "read on” convey a confident, possibly casual tone. Wording matters! How does your wording make up your tone? What wording could you change to better suit your intended tone?

    Please contact Dave Bounds at x2859 (virtual office hours: Tuesday and Thursday, 9-11 a.m.) with any questions. Happy writing!

    Category
  • MAKE WRITING FLOW WITH “PARAGRAPHING”

    Just as the sentences in a good paragraph connect to create a train of thought, paragraphs themselves should flow together to create the train of thought for whatever it is you are writing. From introduction to body to conclusion, paragraphs are key. “Paragraphing” well is all about moving your reader’s attention smoothly from one paragraph to the next.

    Incorporating smooth transitions, or segues, between your paragraphs comes down to two methods. The first method is using key words in the start of the paragraph (or toward the beginning) that shape the reader’s expectations for what comes next. For example: Instead of “Several proposals came through...,” try starting your paragraph with “In the first proposal...” Delegating your discussion items into their own paragraphs not only directs your reader’s attention but organizes your own thoughts.

    The paragraph above did this by mentioning two transition methods but only discussing one. The second method is to feature key words in the concluding line of a paragraph to set up what comes next. A paragraph on IT updates might mention “...which brings up implications for cybersecurity,” in the concluding sentence. The next paragraph can then jump right into discussing those implications.

    Contact Dave Bounds at x2859 with any questions. Happy writing!

    Category
  • SENTENCES MATTER!

    Writing usually involves a lot of shaping and rearranging sentences. If one sentence is too long, awkwardly worded, or just “off,” it can distract readers. Assessing the way sentences are structured is essential to improving your writing skills.

    No matter the sentence, it always come down to the subject and the verb. For example: “She wrote.” Anything outside of this sentence just concerns the details. To expand on the example: “She wrote an assessment of the initial efforts of the new program, which began in FY 2021.” In that sentence, the subject remains “she” and the action remains “wrote.” The rest pertains to what she wrote about. To make this flow better, we could break the sentence in two: “She wrote an assessment of the program. The initial efforts began in FY 2021.”

    Which is easier to read? The longer sentence or the two shorter sentences? How would you restructure sentences in your own writing to allow for better flow and focus?

    Maintaining a subject/verb can ease the stress that comes with finding places to put the extra details. The subject/verb focus is key to creating compelling sentences.

    Contact Dave Bounds at x2859 with any questions. Happy writing!

    Category
  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    Lead Magnet Engineer 13366 Engineering
    Project Controls Analyst 13302 Clerical/Admin
    MIS Application Server Administrator 13394 Computer
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    Travel and Accounting Specialist 13407 Clerical/Admin
    Fusion Project Technician 13389 Misc./Trades
    Magnet Group Staff Engineer 13370 Engineering
    Vacuum Engineer 13396 Engineering
    RadCon Manager 13337 Environmental Safety
    ES&H Department Head 13338 Engineering
    Master HVAC Technician 13367 Misc./Trades
    Communications Office Student Intern 13310 Public Relations
    IT Project Manager 13340 Clerical/Admin
    CIS Postdoctoral Fellow 13102 Science
    Survey & Alignment Technician (Metrology) 13385 Misc./Trades
    Gaseous Detector Support Staff Engineer 13400 Engineering
    Hall C Technician III 13390 Misc./Trades
    Storage Solutions Architect 13238 Computer
    Deputy CNI Manager 13378 Computer
    Mechanical Engineer III 13140 Engineering
    DC Power Group Leader 13380 Engineering
    Accelerator Operator 13403 Technology
    SRF Accelerator Physicist 13359 Science
    Hall C Staff Engineer II 13178 Engineering
    Sustainability Engineer (Electrical) 13364 Engineering
    Scientific Data and Computing Department Head 13383 Computer
    Data Center Operations Manager 13327 Engineering
    Geant4 Developer 13214 Computer
    Administrative Assistant - Electron Ion Collider Project 13375 Clerical/Admin

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • Ron Lassiter, Mechanical Designer

      Mechanical designer uses expertise to craft equipment that enables cutting-edge experiments.

      Modeling and Design Critical to Project Success

      When Ron Lassiter walks into Halls A, B and C at Jefferson Lab, he has a sense of pride and fascination—feelings that come from being the mechanical designer of many of the machines and parts that make the lab run.

      Lassiter’s work largely takes place on a computer, where he translates scientists’ project requirements and goals into 2-dimensional and 3-dimensional models of equipment that he thinks will enable the experiments to function. The work—and results—are fulfilling to Lassiter.

      “Seeing the end result, it fascinates me,” he said. “Here at the lab you get to see what you’ve worked on. You can hold it in your hands. It’s rewarding to know that you’ve played a part in helping the machine to be successful.”

      Understanding Machines and How to Use Them

      One might assume that Lassiter must have a scientific background in order to understand and fulfill equipment deliverables for very specific and high-level experiments. However, Lassiter says he has to have some of the general ideas behind the science, such as how the machines work, the operating temperatures and materials, along with a host of software he may need to call upon for specific design capabilities, including NX, Fusion 360, AutoCAD and Inventor.

      “I don’t understand all of the physics behind all of the experiments, but my job is to make sure that our design offers what the scientists are looking for—the end product,” Lassiter explained. “I know how to build models and to stay within the confinement of where the experiment is going. For example, when a project requires a certain beam direction, I know how to position my model so it takes into account the direction of the beam. I also know what materials can and cannot be used.”

      Lassiter admits that much of his current work as a mechanical designer is based on existing infrastructure, some of which was put into place before he began his tenure at the lab in 2000.

      “Each hall has basically already been laid out by previous designers and engineers and we are building upon what’s been done in the past,” he said. “There are some things that are challenges that call us to have to be creative with what we’re thinking. For example, right now we’re doing some fine-tuning on the cryomodules so that all previous changes to the equipment are incorporated into new drawings.”

      The process of integrating existing infrastructure into new designs can be painstaking, according to Lassiter. For example, there are thousands of magnets installed at Jefferson Lab, and each one must be labeled individually so that models perfectly sync with infrastructure throughout the lab. For help with this intricate work, Lassiter has a student assistant from Thomas Nelson Community College whom he has trained on the lab’s design software. Once the labels are all in place, designing will be more fluid.

      Design, Refine and Build

      Just as each experiment is unique, each physicist has his or her own way of communicating their project needs to Lassiter.

      “Sometimes they have drawings and sometimes they sketch on a board what they are looking for and it’s just a sketch because they don’t know exactly what they need,” he said. “I listen to what they say and come up with a sketch that I present to them.”

      After presenting his initial sketch to the project lead, Lassiter may refine the 2-D sketch multiple times until he creates a 3-D model of the machine or equipment, which he then presents to the team. From the final model, the engineering team can begin crafting the machine or equipment and the experiment can move forward.

      Because his role is so critical to enabling scientific experiments to move forward, Lassiter must be confident in his ability to combine his design and software skills with his aptitude for logistics. For that, he is appreciative of the education and responsibility provided to him by his early years as a construction and machine designer the Newport News shipyard, where he first learned how to use design software for large projects.

      “I always wanted to create things,” said Lassiter. “I love building things, coming up with conceptions and seeing the end result.”

      By Carrie Rogers

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Welding Program Manager
      Jenord Alston
      Welding Program Manager

      "Everybody in the chain is working towards the same goal: to ensure that everything is built safe and to the code specifications"

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    • Jian-Ping Chen
      Jian-Ping Chen
      Senior Staff Scientist

      “Every time we solve problems, we contribute. It’s exciting times for new results and discoveries.”

    • Ron Lassiter
      Ron Lassiter
      Mechanical Designer

      “Here at the lab you get to see what you’ve worked on. You can hold it in your hands. It’s rewarding to know that you’ve played a part in helping the machine to be successful.”

    • Scott Conley
      Scott Conley
      Environmental Management Team

      "There is world-class research going on here. Any given day you can be in the room with genius physicists and that’s just amazing.”

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.

  • The Electron-Ion Collider is a proposed machine for delving deeper than ever before into the building blocks of matter, so that we may better understand the matter within us and its role in the universe around us.