JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • coming soon

  • Thomas Jefferson National Accelerator Facility (Jefferson Lab) provides scientists worldwide the lab’s unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), to probe the most basic building blocks of matter by conducting research at the frontiers of nuclear physics (NP) and related disciplines. In addition, the lab capitalizes on its unique technologies and expertise to perform advanced computing and applied research with industry and university partners, and provides programs designed to help educate the next generation in science and technology.

    Majority of computational science activities in Jefferson Lab focus on these areas : large scale and numerical intensive Lattice Quantum Chromodynamics (LQCD) calculations, modeling and simulation of accelerators and the experiment detectors, fast data acquisition and streaming data readout, high throughput computing for data analysis of experimental data, and large scale distributed data storage and management.

    Many Jefferson Lab scientists and staffs lead or actively participate the computational efforts in the above areas. Among those are computer/computational scientists and computer professionals from newly formed computational sciences and technology division (CST), physicists from physics division and the Center for Theoretical and Computational Physics, and accelerator physicists from Center for Advanced Studies of Accelerators (CASA). In addition, collaborations with universities and industrial partners further research and development in computational science.

    Jefferson Lab maintains various state of art high performance computing resources onsite. CSGF students will utilize these resources to carried out their researches in the specific areas described below:

    Accelerator Modeling

    CASA and Jefferson Lab SRF institute focus on advanced algorithms, such as fast multipole methods, for multiparticle accelerator dynamics simulations, artificial intelligence (AI) and machine learning (ML) applied to superconducting RF (SRF) accelerator operations, and integrated large and multi-scale modeling of SRF accelerator structures. These areas will be an essential part of a national strategy to optimize DOE operational facility investments, and to strengthen Jefferson Lab’s core competency of world-leading SRF advanced design and facility operations. Especially, current active simulation projects

    like electron cooling, intra-beam scattering, and coherent synchrotron radiation present diverse research domains ranging from numerical algorithms development to parallel computing.

    Streaming Data Readout

    With tremendous advancement in micro-electronics and computing technologies in the last decade, many nuclear physics and high-energy physics experiments are taking advantage of these developments by upgrading their existing triggered data acquisition to a streaming readout model (SRO) , whereby detectors are continuously read out in parallel streams of data. An SRO system, which could handle up to 100 Gb/s data throughput, provides a pipelined data analysis model to nuclear physics experiments where data are analyzed and processed in near real-time fashion. Jefferson Lab is leading a collaborative research and development effort to devise SRO systems not only for CEBAF 12GeV experiments but also for the upcoming EIC facility. SRO development offers CSGF students some exciting research areas such as network protocol design, high speed data communication, high performance data compression and distributed computing.

    Physics Data Analysis

    Analysis of data from modern particle physics experiments uses technically advanced programming and computing techniques to handle the large volumes of data. One not only needs to understand aspects of parallel programming using modern languages such as C/C++, Java, and Python, but also must incorporate knowledge of experimental techniques involving error propagation and estimation in order to properly interpret the results. Aspects of this range from writing a single algorithm used in event reconstruction, to using the collection of algorithms written by others, to managing campaigns at HPC facilities that apply these algorithms to large datasets. Detector calibrations and final physics analysis are also significant parts of the analysis chain. CSGF students could participate in any of these areas.

    Machine Learning

    Rapid developments in hardware computational power and an ever increasing set of data has lead to explosive growth in machine learning techniques, specifically deep learning techniques. These techniques threaten to change just about every facet of modern life and nuclear physics is no exception. At Jefferson Lab machine learning is being developed for every step in the physics workflow. To deliver beam to the experimental halls the accelerator relies on radio frequency (RF) cavities to accelerate the electrons. Occasionally these cavities, of which there are over 400 in operation around the accelerator, fault which disrupts the delivery of the beam to experiments. To quickly identify and diagnose cavity faults A.I. is being developed and deployed. Experiments themselves are developing and/or deploying A.I. to monitor detector performance, decide what data to keep, reconstruct detector responses, simulate the detectors, and even to analyze collected data. With the active development of machine learning tools and techniques Jefferson Lab hopes to drive nuclear physics research forward, enabling physicists to more quickly obtain and analyze high quality data.

    • Start typing the title of a piece of content to select it.
    • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    3. You can also enter an internal path such as /node/add or an external URL
    • Start typing the title of a piece of content to select it.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. You can also enter an internal path such as /node/add or an external URL
  • Computational Sciences and Technology (CST) Division

  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    Vacuum Engineer 13396 Engineering
    Multimedia Intern 13215 Public Relations
    IT Project Manager 13340 Clerical/Admin
    Magnet Group Staff Engineer 13370 Engineering
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    RadCon Manager 13337 Environmental Safety
    Accelerator Operator 13291 Technology
    Communications Office Student Intern 13310 Public Relations
    Lead Magnet Engineer 13366 Engineering
    Mechanical Engineer III 13140 Engineering
    RF Group Leader 13261 Engineering
    SRF Accelerator Physicist 13359 Science
    Data Center Operations Manager 13327 Engineering
    ES&H Department Head 13338 Engineering
    MIS Application Server Administrator 13394 Computer
    Storage Solutions Architect 13238 Computer
    Scientific Data and Computing Department Head 13383 Computer
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    Network Engineer I 13345 Computer
    HPDF Project Director 13373 Computer
    CIS Postdoctoral Fellow 13102 Science
    Master HVAC Technician 13367 Misc./Trades
    Hall A Technologist/Design Drafter 13285 Engineering
    Project Controls Analyst 13302 Clerical/Admin
    DC Power Systems Electrical Engineer 13371 Engineering
    Radiation Control Technician 13391 Technology
    Project Services and Support Office Manager 13330 Management
    Administrative Assistant - Electron Ion Collider Project 13375 Clerical/Admin
    Electrical Engineer (Sustainability) 13364 Engineering
    MPGD Development Physicist 13381 Science
    DC Power Group Leader 13380 Engineering
    Deputy CNI Manager 13378 Computer
    Survey & Alignment Technician (Metrology) 13385 Misc./Trades
    Fusion Project Technician 13389 Misc./Trades
    ES&H Inspection Program Lead 13323 Environmental Safety
    Geant4 Developer 13214 Computer

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • Nobuo Sato - Staff Scientist

      Exploring the hidden world of quarks and gluons

      Nobuo Sato has “crafted” a unique skillset to help him excel in his career. This DOE Early Career Award-winning nuclear physicist uses his skills as a computational scientist in the Center for Theoretical and Computational Physics at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility to explore the femtoscale world of quarks and gluons.

      “One of the primary missions of the lab is to explore the inner core of matter,” Sato explains. “This is an expedition—a trip to the center of protons and neutrons, which are fundamental objects that everything we see is made of.”

      Inside protons and neutrons, the team explores some of the smallest-known particles – the quarks that make up protons and neutrons and the gluons that bind those quarks together -- to embark on a deeper understanding of how they behave.

      “Nature has its own code,” Sato says. “It’s known as the ‘Standard Model’ and within it there is the theory of strong interactions that controls everything we see. We have Jefferson Lab as a facility to study the current frontier of science, which allows us to probe the realm of quarks and gluons.”

      By performing scattering experiments under various conditions, Sato and his team are able to infer how quarks and gluons respond to various stimuli. Cataloging these observations enhances science’s understanding of the Standard Model as it pertains to quarks and gluons.

      Then, with enough data, Sato can connect the theory of strong interactions to observational data. By investigating this connection, scientists can learn about the intrinsic properties of nucleons and nuclei in terms of its elementary constituents.

      Protons, neutrons require orchestrated effort to probe and capture

      Sato and his theorist colleagues have devised clever methods to analyze data recorded by experimentalists about the slippery protons and neutrons.

      “Part of the difficulty is that all of the matter inside the protons and neutrons can’t exist in isolation,” Sato explains. “The interior has to stay whole—as a ‘bound state.’ You can’t pull a quark out and have it stay stable. Once it is pulled out of the bound state, it becomes an ‘independent,’ which can only exist in a very tiny fraction of time.”

      “As soon as you poke a proton or neutron with a probe, such as an electron beam, it becomes something else,” Sato says. “It follows that different outcomes can occur due to quantum mechanics.

      Indeed, this probing method is central to many of the lab’s experiments and requires concerted maneuvering to succeed.

      “There is an entire industry around how we can probe protons, and everyone at the lab has a role,” says Sato. “The accelerator teams are doing an excellent job producing energetic electron beams, and the experimentalists collect data from scattering events.

      “Then there’s an entire system for acquiring data, including experimentalists, who will work around-the-clock in shifts to get all the data needed. Those data are converted into maps that theorists like me can reverse-engineer into a visual depiction of quarks and gluons. It is very complicated stuff -- let’s say that,” Sato laughs.

      While "the whole lab orchestrates and synchronizes to play together,” Sato notes that, “Theory comes first.

      "An experiment starts with a theory,” he explains. “From there, we have a framework that allows us to make calculations. Combining those calculations with computer science, we can reverse-engineer the hidden world of quarks and gluons into observational data. We are mapping data to help visualize and observe the inner core of matter.”

      Essential Tools: High-powered Microscopes

      While an experiment may begin with a theory, assembling a toolkit is a critical early step.

      “A proton is ten-to-the-minus-15 meters in size,” says Sato. “Quarks and gluons are even smaller than a proton. We can’t see them directly, because our eyes will be blind to them.”

      In order to observe the smallest-known particles, “you have to have a particle accelerator, which is essentially a probe inward like a microscope,” explains Sato. 

      That is where Jefferson Lab’s Continuous Electron Beam Accelerator Facility comes in. CEBAF is a DOE Office of Science user facility that enables the research of more than 1,900 nuclear physicists worldwide.

      “One of our goals is to try to take pictures of the protons,” Sato says. “Just two decades ago, the field mostly relied on a one-dimensional picture. With the theoretical framework we now have, we are in a position to start to understand the full dimensionality of this realm.”

      However, Sato notes, the “picture” he creates is not actually a picture, but rather a reconstruction made from observing behaviors and cataloging patterns in order to develop a projection of the characteristics of the subject.

      In short, the subject Sato is trying to capture can only be “seen” by capturing its shadow from different angles and reconstructing the image with as much data as possible.

      “We observe the reactions happening around the quarks and gluons in order to reverse-engineer an image—kind of like how we imagine the black hole,” Sato explains. “You can’t see a black hole directly, either, so to visualize it, you have to take a lot of data and try to reverse-engineer what a picture of the activity would really look like if we could see it.”

      Support and mentoring for the big picture

      Just as improving technology can further push the scientific frontier, Sato recognizes that supporting and mentoring other scientists can have an important impact on results—and he is eager for opportunities to engage.

      “As part of the theory group, we give support to our experimental colleagues,” explains Sato. “Supporting physics is sharing theory. As a theoretical physicist, I work with experimentalists to design their experiments in ways that will help us optimize our time using the accelerator, so that we can get the quality of data we need to most accurately reconstruct the image we want.”

      Sato also looks forward to mentoring—and learning from—a regular flow of postdoctoral students and interns.

      “Part of mentoring younger scientists is to showcase the relationship between the theory realm and experimental realm,” Sato says.

      “Our summer interns are undergraduate students who are interested in theoretical physics,” Sato explains. “We assign projects so we can train them and pave their way to work in this field. The skills they gain are big.

      “I have a small bandwidth and having a group of people who works together helps us all,” he continues. “Students learn more about theory and a lot about computing and machine learning. They have hands-on computational activities with real science that can be applied.”

      Sato’s goal when mentoring others is simple: “I want to give the opportunity to everyone who is interested in this field of study and to learn about the wonders of this microscopic hidden world of quarks and gluons.”

      Outside of the lab, Sato says that he enjoys running.

      “Running is one of my favorite outdoor activities,” Sato says. “I don’t like to compete. Running is a time when I can think about solutions to problems I’m working on. Some problems I solve when running. There’s an interesting dynamic between the two.”

      Further Reading
      Analyzing Matter’s Building Blocks
      Theorist Takes Aim at the Makeup of Matter
      Computing Takes the Prize 

      By Carrie Rogers 

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Jianwei Qiu
      Jianwei Qiu
      Associate Director For Theoretical And Computational Physics

      "My own research enables me to better lead the Theory Center, to lead our collaboration, to provide good guidance to our junior researchers on the team, and to provide valuable input to the advisory and review committees that I serve"

    • Ashley Mitchell
      Ashley Mitchell
      SRF Chemistry Technician

      “Chemistry is the art of science and art; you’re manipulating and creating things. We have lots of different recipes to work with.”

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    • Ron Lassiter
      Ron Lassiter
      Mechanical Designer

      “Here at the lab you get to see what you’ve worked on. You can hold it in your hands. It’s rewarding to know that you’ve played a part in helping the machine to be successful.”

    • Kim Edwards
      Kim Edwards
      IT Division/Information Resource

      "When I’m 95 years old, I hope I will be one of those people who worked in the background to affect other people’s lives for the better."

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.

  • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    PB Titie here blah blah

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock,

  •  jnfslk nflk gnfdlgd

    NEW POLICY  - PLEASE READ!!!!  fgsdf sdfsdfsdf sdf sd fsdf fgdf fd gdf gdf

     

     yj tj tujytjty

    thumb image of map for parking

    • sd mvnw vnwdfovn wfvnnl vw nov wov
      • no vnowsd mvnw vnwdfovn wfvnnl vw nov w
      • ovno vnowsd mvnw vnwd
      • fovn wfvnnl vw nov wovno vnowsd m
        • vnw vnwdfovn wfvnnl vw nov
        • wovno vnowsd mvnw vnwdfov
        • n wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw
        • nov wovno vn
    • owsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnow

    erterter tret ert er ter t

    sfgdg dfg dfgdfg dfgdfg dfgdfgdfgff gdfgdfg dfgdfg dfgdfg dfgdf dfgdfg
                     
                     
                     
                     
                     
                     

    sd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vno

    gertgertretertertert et ret ert 

    kjhkjhkjhkjhkjhk njh hhn fh gdhgf h

    sd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnowsd mvnw vnwdfovn wfvnnl vw nov wovno vnow

    • Femtocenter.org website: maintenance and updates to standalone website. This includes added costs for security and platform updates. Work is verified by the webmaster and processed directly through JSA to the lab’s Drupal CMS contractor.  
    • HPDF website: maintenance and updates to standalone website. This includes added costs for security and platform updates. Work is verified by the webmaster and processed directly through HPDF to the lab’s Drupal CMS contractor

    Web server support. Work with the CST division to maintain, update and upgrade existing file servers that interact with the lab’s websites. Submit Service Now tickets and follow up on them when web servers need upgrades or