JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • Remote Work Policy at Jefferson Lab

     

  • Status

    Status

    More information about the status of an electron-ion collider can be found in the documents linked below. In 2018, the National Academies of Sciences, Engineering and Medicine issued a report, “An Assessment of U.S.-Based Electron-Ion Collider Science.” Following the report, the directors of Thomas Jefferson National Accelerator Facility and Brookhaven National Laboratory issued a joint statement of support. More information about the impetus for building an electron-ion collider can be found in the 2015 Long-Range Plan, issued by the Nuclear Science Advisory Committee..

     

  • Benefits

    Benefits

    Beyond sparking scientific discoveries in a new frontier of fundamental physics, an Electron-Ion Collider will trigger technological breakthroughs that have broad-ranging impacts on human health and national challenges. Research on the technologies needed to make this machine a reality is already pushing the evolution of magnets and other particle accelerator components. 
     
    Some of these advances could lead to energy-efficient accelerators, thereby dramatically shrinking the size and operating costs of accelerators used across science and industry for example, to make and test computer chips; to deliver energetic particle beams to zap cancer cells; to study and design improved sustainable energy technologies such as solar cells, batteries, and catalysts; and to develop new kinds of drugs and other medical treatments. New methods of particle detection developed for an EIC could also lead to advances in medical imaging and national security. 
     
    In truth, it’s nearly impossible to predict what will come from the knowledge gained from an EIC. History shows that applications springing from a deeper understanding of matter and fundamental forces things like GPS, microelectronics, and radiological techniques for diagnosing and treating disease often emerge many years after the foundational physics discoveries that make them possible. 
     
    But one thing is certain: Building the experiments that inspire and train the next generation of scientific explorers is essential for maintaining U.S. leadership in nuclear science and for developing the high-tech workforce needed to address some of our nation’s deepest challenges.

     

  • Design

    Design

    "Design"

    The Electron-Ion Collider would consist of two intersecting accelerators, one producing an intense beam of electrons, the other a beam of either protons or heavier atomic nuclei, which are then steered into head-on collisions.

    The accelerators will be designed so that both beams can be polarized to around 70 percent for electrons, protons and light nuclei. Electrons will be able to probe particles from protons to the heaviest stable nuclei at a very wide range of energies, starting from 20–100 billion electron-volts (GeV), upgradable to approximately 140 GeV, to produce images of the particles’ interiors at higher and higher resolution. At least one detector and possibly more would analyze thousands of particle collisions per second, amassing the data required to tease out the smallest effects required for significant discoveries.

    Building the EIC will require the same core expertise that led to the versatility of the polarized proton and heavy ion beams at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and the unique polarized electron beam properties of the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson National Accelerator Facility. These two Department of Energy laboratories have been collaborating on initial studies and developing designs that make use of key existing infrastructure and capitalize on investments in science and technology. Each design approach would require the development of innovative accelerator and detector technologies to answer the questions described in this brochure.

     

  • Goals

    Goals

    There are many scientific questions that researchers expect an Electron-Ion Collider will allow them to answer. Among them are four main topics of study. 

     

    3D Structure of Protons and Nuclei
    3D Structure of Protons and Nuclei
    Scientists would use the Electron-Ion Collider to take three-dimensional precision snapshots of the internal structure of protons and atomic nuclei. As they pierce through the larger particles, the high-energy electrons will interact with the internal microcosm to reveal unprecedented details—zooming in beyond the simplistic structure of three valence quarks bound by a mysterious force. Recent experiments indicate that gluons—the glue-like carriers of the strong nuclear force that binds quarks together—multiply and appear to linger within particles accelerated close to the speed of light, and play a significant role in establishing key properties of protons and nuclear matter. By taking images at a range of energies, an EIC will reveal features of this “ocean” of gluons and the “sea” of quark-antiquark pairs that form when gluons split—allowing scientists to map out the particles’ distribution and movement within protons and nuclei, similar to the way medical imaging technologies construct 3D dynamic images of the brain. These studies may help reveal how the energy of the massless gluons is transformed through Einstein’s famous equation, E=mc2, to generate most of the mass of visible matter.
    Solving the Mystery of Proton Spin
    Solving the Mystery of Proton Spin
    The Electron-Ion Collider would be the world’s first polarized electron-proton collider where both the electron and proton beams have their spins aligned in a controllable way. This polarization makes it possible to make precision measurements of how a proton’s constituent quarks and gluons and their interactions contribute to the proton’s intrinsic angular momentum, or spin. Spin influences the proton’s optical, electrical, and magnetic characteristics and makes technologies such as MRI scanning work, but its origin has eluded physicists ever since experiments in the 1980s revealed that quarks can account for only about a third of the total spin. More recent experiments show that gluons make a significant contribution, perhaps even more than the quarks. An Electron-Ion Collider would produce definitive measurements of the gluons’ contributions, including how their movements within the proton microcosm affect its overall spin structure—thus providing the final pieces needed to solve this longstanding puzzle.
    Search for Saturation
    Search for Saturation
    Capturing the dynamic action of gluons within protons and nuclei will give scientists a way to test their understanding of these particles’ ephemeral properties. As gluons flit in and out of the vacuum, multiplying and recombining, scientists suspect they may reach a steady state of saturation called a “color glass condensate.” This unique form of nuclear matter gets its name from the “color” charges that mediate the interactions of the strong nuclear force, and the dense, glasslike walls these particles are thought to form in nuclei accelerated to nearly the speed of light, seemingly suspended by the effects of time dilation. Scientists will use the Electron-Ion Collider to search for definitive proof of whether this form of matter exists, and test the limits of gluons’ ability to expand beyond the bounds of a single proton/ neutron inside a nucleus. They’ll also explore the mechanism that keeps gluon growth in check, like a lid clamping down on an overflowing popcorn pot. Precisely measuring the strength of the gluon fields, which constitute the strongest fields found in nature, will tell us how gluons interact with each other and how they contribute to building the bulk of visible matter in the universe today.
    Quark and Gluon Confinement
    Quark and Gluon Confinement
    Experiments at an EIC would offer novel insight into why quarks or gluons can never be observed in isolation, but must transform into and remain confined within protons and nuclei. The EIC—with its unique combinations of high beam energies and intensities—would cast fresh light into quark and gluon confinement, a key puzzle in the Standard Model of physics.
  • About

    About

    The Electron-Ion Collider is a proposed machine for delving deeper than ever before into the building blocks of matter, so that we may better understand the matter within us and its role in the universe around us.

    Learn more about this first-of-its-kind machine in the documents linked below.

     

  • Happy Holidays!

    seasons_greetings

     

    Dear Colleagues,

    As 2019 comes to a close, it is worth reflecting on all that was accomplished in the last year thanks to your hard work and dedication.

  • JLab Implementing MEDCON 5 Precautions Starting Tuesday, March 17 (msg.6)

     

    Posted on behalf of Lab Director, Stuart Henderson
     

    The growing number of COVID19 cases in our region, particularly James City County, requires more aggressive action to protect our employees, their families, our Users, visitors, and the community. At the recommendation of the Jefferson Lab Pandemic Advisory Team we are implementing MEDCON 5 effective today, Monday, March 16.

  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    IT Project Manager 13340 Clerical/Admin
    Deputy CNI Manager 13378 Computer
    CIS Postdoctoral Fellow 13102 Science
    Storage Solutions Architect 13238 Computer
    Project Services and Support Office Manager 13330 Management
    Electrical Engineer (Sustainability) 13364 Engineering
    Hall A Technologist/Design Drafter 13285 Engineering
    Multimedia Intern 13215 Public Relations
    Communications Office Student Intern 13310 Public Relations
    Network Engineer I 13345 Computer
    Mechanical Engineer III 13140 Engineering
    Geant4 Developer 13214 Computer
    Radiation Control Technician 13391 Technology
    Accelerator Operator 13291 Technology
    Fusion Project Technician 13389 Misc./Trades
    Lead Magnet Engineer 13366 Engineering
    ServiceNow Developer 13393 Computer
    Magnet Group Staff Engineer 13370 Engineering
    RF Group Leader 13261 Engineering
    MPGD Development Physicist 13381 Science
    RadCon Manager 13337 Environmental Safety
    Survey & Alignment Technician (Metrology) 13385 Misc./Trades
    DC Power Systems Electrical Engineer 13371 Engineering
    Administrative Assistant - Electron Ion Collider Project 13375 Clerical/Admin
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    HPDF Project Director 13373 Computer
    Software Administrator/Analyst 13392 Computer
    ES&H Department Head 13338 Engineering
    Scientific Data and Computing Department Head 13383 Computer
    ES&H Inspection Program Lead 13323 Environmental Safety
    DC Power Group Leader 13380 Engineering
    Vacuum Engineer 13396 Engineering
    Master HVAC Technician 13367 Misc./Trades
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    Project Controls Analyst 13302 Clerical/Admin
    SRF Accelerator Physicist 13359 Science
    Data Center Operations Manager 13327 Engineering
    MIS Application Server Administrator 13394 Computer

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • EIC User: Rachel Montgomery – EIC Scientist and Research Fellow

      Scotland-based Nuclear Physicist Rachel Montgomery works toward Electron-Ion Collider in hopes of journey to the smallest of places: the world of quarks and gluons

      What is your role in the Electron Ion Collider (EIC)?
      I am a co-convenor for one of the working groups of the physics benchmark team for the upcoming EIC Comprehensive Chromodynamics Experiment (ECCE)* detector proposal. In our group, we are studying several interesting exclusive reactions, which we plan to measure at the EIC. These measurements will help to shed light on some of the EIC’s most pressing topics, for example: multi-dimensional imaging of the quarks and gluons inside nucleons, nuclei and mesons.

      Exclusive reactions require all final state particles to be detected and fully reconstructed. As such, we are studying the particular strengths of the ECCE detector design with regards to realizing these measurements.

      How did you get involved with the EIC project?
      My interests and activities in the EIC project were first sparked through involvement with the EIC meson structure working group. In my current research, which is ongoing at Jefferson Lab, I am involved in upcoming experiments aiming to extract information on the structure of particles called light mesons, such as the pion and kaon.

      The EIC will provide our community with an excellent opportunity to drastically expand our existing sparse data describing light meson structure and vastly improve our knowledge of the dynamic picture of quarks and gluons inside these mesons.

      Why do you feel that the EIC is an important facility?
      The EIC will unlock a totally new area of discovery and technology in nuclear physics. It will be a completely novel and unique facility, in terms of the physics reach available and the type of accelerator it is. This will allow us to explore a completely new regime in our field. The opportunities to learn more about the roles of gluons within nucleons, and nucleons bound within nuclei, will be crucial to completing our knowledge of how the quarks and gluons are arranged within the nucleon, and how this impacts the observable properties of the nucleon and nuclei.

      The advancements in accelerator and detector technologies necessary to achieve these challenging measurements will likely also have many applications in other fields of science.

      What do you hope to learn with the EIC?
      I’m really very keen to continue my research and learn more about meson structure at the EIC. These mesons play very important roles in quantum chromodynamics and nuclear physics. The EIC provides us with a truly exciting opportunity to collect more meson structure data, which will allow us to explore topics such as how the mass and structure of pions and kaons emerge and what implications this has for the mass of other hadrons—as well as for nucleon and nuclear structure.

      On a more personal level, I am also looking forward to expanding my horizons, in general, and learning more about particle collider experiments. Before the EIC, I had only been involved in fixed-target experiments. The EIC is already bringing together many physicists and engineers from several different areas of accelerator, particle and nuclear physics, and I expect there will be lots of chances to learn about new topics beyond my immediate research field. I am also looking forward to exploring future research collaborations or projects.

      What is the biggest software or data challenge you expect to face in your EIC research?
      I expect, within the scope of my research, that the biggest challenges will be the availability of computing resources, in terms of CPUs and data storage available. Many of the reactions we are planning to look at are rare processes, which means that we will need to collect very large data sets, and these data sets will include vast amounts of information from the detectors.

      The data will also include events from competing background processes, which we must remove to extract our reactions of interest. As well as analyzing data collected at the EIC, it is necessary to simulate our measurements and the background processes. This is the stage I am at in my current EIC activities. This stage requires batch processing to perform the simulations and analysis of the outputs congruently. The processes require many CPU hours each and, due to the numerous particles created in the reactions and the recording of information from their passage through many detector systems, the data files are very large in size.

      A similar workflow process will be required when analyzing data from the experiments. Since there are countless interesting studies and science opportunities at the EIC, there will be numerous scientists planning to use the computing facilities available in a similar way, at the same time.

      What fascinates or excites you most about your work? Why?
      The particles and interactions that we study in nuclear physics allow us to better understand the fundamental building blocks of the visible matter surrounding us—and, subsequently, the universe in which we live. I find this level of pure discovery really inspiring. To me, it’s fascinating that the physics of our field can be used to describe systems spanning from the simple hydrogen atom all the way up to astronomical scales. I enjoy discussing this aspect of nuclear physics—and the relevance of nuclear physics to everyday applications in society—with people outside of physics and observing how it sparks their curiosity, too.

      Within my own research, beyond the wider scientific context, I am really interested to learn about and work on technology advancements. The detectors and apparatus we are developing for the novel experiments that I am involved with are pushing beyond existing limits, and that is very exciting. I love to see how advanced instrumentation can enable us to measure the nucleon on the deepest level possible.

      What is currently the most prominent 'thing' on your desktop, physical or virtual?
      My monitors. I keep my desk pretty clutter-free and prefer a “mission control” approach, with more than one monitor and with each monitor being as big as possible, so I can immerse myself in work. The same is true about my virtual desktop–in fact there is nothing on it, except the background picture, which is a holiday snap.

      What does a typical workday look like for you?
      A typical workday involves a lot of computational work, mostly simulations of upcoming experiments or detectors using Geant4, as well as the development of software for analyzing data from detectors. I also have several meetings, most of which are virtual (even under normal circumstances), since I am based at the University of Glasgow in the United Kingdom.

      Typically, I also spend some time during the week in my laboratory at the university, either testing electronics or working on detector characterizations. I enjoy the variety in dividing my time between working at a desk and doing practical work in a laboratory. I have Ph.D. student supervisory duties, so a typical day may also involve meeting and working with the Ph.D. students. During term time, I also run an undergraduate lab on particle detection and help out with undergraduate physics labs.

      All of these activities are fueled by scattered, but important, coffee breaks.

      What do you like to do when you aren't working on EIC science?
      In addition to EIC topics, my research is mostly focused on working with colleagues to prepare upcoming Jefferson Lab experiments that will use the new Super BigBite Spectrometer apparatus in experimental Hall A. I am really looking forward to the beginning of operations at Jefferson Lab again, to see these exciting experiments become reality and contribute to them.

      The experiments I am involved with at Jefferson Lab are about looking at the inner structure of the nucleon and light mesons by using novel techniques in previously unexplored kinematic regimes. I also greatly enjoy working on particle detector developments, and I’m currently involved in some fast photon detector studies, for example.

      Outside of science, or work, you can find me mostly checking the weather forecast to opportunistically explore the Scottish mountains in my free time (either hiking or snowboarding). If the weather doesn’t allow for these adventures, I enjoy going to the cinema or going to see live music.

      This story is a pilot project conceived by the Software Working Group of the EIC User Group to become part of a series of profiles of future users of the Electron-Ion Collider (EIC), a next-generation nuclear physics research facility being built at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory in partnership with DOE’s Thomas Jefferson National Accelerator Facility and collaborators around the world. The Software Working Group seeks to develop user-friendly tools to meet the data and software needs of the international group of physicists who will conduct research at the EIC.

      * This profile features a member of the EIC Comprehensive Chromodynamics Experiment (ECCE) consortium, which is currently developing a general detector concept that meets the design requirements and performance goals for an EIC detector as laid out by the EIC Yellow-Report process. Stay tuned for the next profile in the series featuring a member of the A Totally Hermetic Electron-Nucleus Apparatus (ATHENA) collaboration, which is developing an EIC detector concept inspired by the Yellow Report and based on a new central detector magnet up to 3 Tesla.

      The EIC project is funded primarily by the DOE Office of Science.

      As told to Carrie Rogers

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Kim Edwards
      Kim Edwards
      IT Division/Information Resource

      "When I’m 95 years old, I hope I will be one of those people who worked in the background to affect other people’s lives for the better."

    • Welding Program Manager
      Jenord Alston
      Welding Program Manager

      "Everybody in the chain is working towards the same goal: to ensure that everything is built safe and to the code specifications"

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    • Scott Conley
      Scott Conley
      Environmental Management Team

      "There is world-class research going on here. Any given day you can be in the room with genius physicists and that’s just amazing.”

    • Jian-Ping Chen
      Jian-Ping Chen
      Senior Staff Scientist

      “Every time we solve problems, we contribute. It’s exciting times for new results and discoveries.”

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.