JEFFERSON LAB SEARCH

(Show results from this date)
(Show results to this date)
*Use spaces between key words, no punctuation needed *Sign In for authenticated content

  • coming soon

  • Remote Work Policy at Jefferson Lab

     

  • Thomas Jefferson National Accelerator Facility (Jefferson Lab) provides scientists worldwide the lab’s unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), to probe the most basic building blocks of matter by conducting research at the frontiers of nuclear physics (NP) and related disciplines. In addition, the lab capitalizes on its unique technologies and expertise to perform advanced computing and applied research with industry and university partners, and provides programs designed to help educate the next generation in science and technology.

    Majority of computational science activities in Jefferson Lab focus on these areas : large scale and numerical intensive Lattice Quantum Chromodynamics (LQCD) calculations, modeling and simulation of accelerators and the experiment detectors, fast data acquisition and streaming data readout, high throughput computing for data analysis of experimental data, and large scale distributed data storage and management.

    Many Jefferson Lab scientists and staffs lead or actively participate the computational efforts in the above areas. Among those are computer/computational scientists and computer professionals from newly formed computational sciences and technology division (CST), physicists from physics division and the Center for Theoretical and Computational Physics, and accelerator physicists from Center for Advanced Studies of Accelerators (CASA). In addition, collaborations with universities and industrial partners further research and development in computational science.

    Jefferson Lab maintains various state of art high performance computing resources onsite. CSGF students will utilize these resources to carried out their researches in the specific areas described below:

    Accelerator Modeling

    CASA and Jefferson Lab SRF institute focus on advanced algorithms, such as fast multipole methods, for multiparticle accelerator dynamics simulations, artificial intelligence (AI) and machine learning (ML) applied to superconducting RF (SRF) accelerator operations, and integrated large and multi-scale modeling of SRF accelerator structures. These areas will be an essential part of a national strategy to optimize DOE operational facility investments, and to strengthen Jefferson Lab’s core competency of world-leading SRF advanced design and facility operations. Especially, current active simulation projects

    like electron cooling, intra-beam scattering, and coherent synchrotron radiation present diverse research domains ranging from numerical algorithms development to parallel computing.

    Streaming Data Readout

    With tremendous advancement in micro-electronics and computing technologies in the last decade, many nuclear physics and high-energy physics experiments are taking advantage of these developments by upgrading their existing triggered data acquisition to a streaming readout model (SRO) , whereby detectors are continuously read out in parallel streams of data. An SRO system, which could handle up to 100 Gb/s data throughput, provides a pipelined data analysis model to nuclear physics experiments where data are analyzed and processed in near real-time fashion. Jefferson Lab is leading a collaborative research and development effort to devise SRO systems not only for CEBAF 12GeV experiments but also for the upcoming EIC facility. SRO development offers CSGF students some exciting research areas such as network protocol design, high speed data communication, high performance data compression and distributed computing.

    Physics Data Analysis

    Analysis of data from modern particle physics experiments uses technically advanced programming and computing techniques to handle the large volumes of data. One not only needs to understand aspects of parallel programming using modern languages such as C/C++, Java, and Python, but also must incorporate knowledge of experimental techniques involving error propagation and estimation in order to properly interpret the results. Aspects of this range from writing a single algorithm used in event reconstruction, to using the collection of algorithms written by others, to managing campaigns at HPC facilities that apply these algorithms to large datasets. Detector calibrations and final physics analysis are also significant parts of the analysis chain. CSGF students could participate in any of these areas.

    Machine Learning

    Rapid developments in hardware computational power and an ever increasing set of data has lead to explosive growth in machine learning techniques, specifically deep learning techniques. These techniques threaten to change just about every facet of modern life and nuclear physics is no exception. At Jefferson Lab machine learning is being developed for every step in the physics workflow. To deliver beam to the experimental halls the accelerator relies on radio frequency (RF) cavities to accelerate the electrons. Occasionally these cavities, of which there are over 400 in operation around the accelerator, fault which disrupts the delivery of the beam to experiments. To quickly identify and diagnose cavity faults A.I. is being developed and deployed. Experiments themselves are developing and/or deploying A.I. to monitor detector performance, decide what data to keep, reconstruct detector responses, simulate the detectors, and even to analyze collected data. With the active development of machine learning tools and techniques Jefferson Lab hopes to drive nuclear physics research forward, enabling physicists to more quickly obtain and analyze high quality data.

    • Start typing the title of a piece of content to select it.
    • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
      Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.
    3. You can also enter an internal path such as /node/add or an external URL
    • Start typing the title of a piece of content to select it.
    • You can also enter an internal path such as /node/add or an external URL
    1. Start typing the title of a piece of content to select it.
    2. You can also enter an internal path such as /node/add or an external URL
  • Computational Sciences and Technology (CST) Division

  • Happy Holidays!

    seasons_greetings

     

    Dear Colleagues,

    As 2019 comes to a close, it is worth reflecting on all that was accomplished in the last year thanks to your hard work and dedication.

  • JLab Implementing MEDCON 5 Precautions Starting Tuesday, March 17 (msg.6)

     

    Posted on behalf of Lab Director, Stuart Henderson
     

    The growing number of COVID19 cases in our region, particularly James City County, requires more aggressive action to protect our employees, their families, our Users, visitors, and the community. At the recommendation of the Jefferson Lab Pandemic Advisory Team we are implementing MEDCON 5 effective today, Monday, March 16.

  • Creative Energy. Supercharged with Science.

    Accelerate your career with a new role at the nation's newest national laboratory. Here you can be part of a team exploring the building blocks of matter and lay the ground work for scientific discoveries that will reshape our understanding of the atomic nucleus. Join a community with a common purpose of solving the most challenging scientific and engineering problems of our time.

     

    Title Job ID Category Date Posted
    Finance Business Manager 13365 Accounting
    Multimedia Intern 13215 Public Relations
    Data Center Operations Manager 13327 Engineering
    Accounts Payable Assistant 13397 Accounting
    Lead Magnet Engineer 13366 Engineering
    Storage Solutions Architect 13238 Computer
    Fusion Project Technician 13389 Misc./Trades
    Survey and Alignment Technician (Metrology) 13385 Misc./Trades
    Deputy CNI Manager 13378 Computer
    ES&H Inspection Program Lead 13323 Environmental Safety
    RadCon Manager 13337 Environmental Safety
    CIS Postdoctoral Fellow 13102 Science
    Vacuum Engineer 13396 Engineering
    SRF Production Chemistry Supervisor 13386 Technology
    Magnet Group Staff Engineer 13370 Engineering
    DC Power Group Leader 13380 Engineering
    Radiation Control Technician 13391 Technology
    Mechanical Engineer III 13140 Engineering
    High Throughput Computing (HTC) Hardware Engineer 13197 Computer
    Project Services and Support Office Manager 13330 Management
    SRF Accelerator Physicist 13359 Science
    Electrical Engineer (Sustainability) 13364 Engineering
    Magnet Group Mechanical/Electrical Designer 13388 Misc./Trades
    DC Power Systems Electrical Engineer 13371 Engineering
    Scientific Data and Computing Department Head 13383 Computer
    Geant4 Developer 13214 Computer
    IT Project Manager 13340 Clerical/Admin
    ES&H Department Head 13338 Engineering
    MPGD Development Physicist 13381 Science
    Communications Office Student Intern 13310 Public Relations
    Hall A Technologist/Design Drafter 13285 Engineering
    Project Controls Analyst 13302 Clerical/Admin
    Master HVAC Technician 13367 Misc./Trades
    HPDF Project Director 13373 Computer

    A career at Jefferson Lab is more than a job. You will be part of “big science” and work alongside top scientists and engineers from around the world unlocking the secrets of our visible universe. Managed by Jefferson Science Associates, LLC; Thomas Jefferson National Accelerator Facility is entering an exciting period of mission growth and is seeking new team members ready to apply their skills and passion to have an impact. You could call it work, or you could call it a mission. We call it a challenge. We do things that will change the world.

    Welcome from Stuart Henderson, Lab Director
    Why choose Jefferson Lab
    • PASSION AND PURPOSE
      Middle School Science Bowl competitors huddle together to brainstorm the answer.
    • PASSION AND PURPOSE
      Local teachers share ideas for a classroom activity with other teachers during Teacher Night.
    • PASSION AND PURPOSE
      Two young learners hold up a model of the atom during Deaf Science Camp.
    • PASSION AND PURPOSE
      Staff Scientist Douglas Higinbotham snaps a selfie with some of the postdoc students he is mentoring.

    At Jefferson Lab we believe in giving back to our community and encouraging the next generation of scientists and engineers. Our staff reaches out to students to advance awareness and appreciation of the range of research carried out within the DOE national laboratory system, to increase interest in STEM careers for women and minorities, and to encourage everyone to become a part of the next-generation STEM workforce. We are recognized for our innovative programs like:

    • 1,500 students from 15 Title I schools engage in the Becoming Enthusiastic About Math and Science (BEAMS) program at the lab each school year.

    • 60 teachers are enrolled in the Jefferson Science Associates Activities for Teachers (JSAT) program at the lab inspiring 9,000 students annually.

    • 24 high school students have internships and 34 college students have mentorships at the lab.

       

    Facebook posts
    Meet our people
    • Krishna Kumar, Jefferson Lab Users Group Chair

      Researcher Relies on Jefferson Lab’s Powerful ‘Microscope’ to Study Weak Forces

      Krishna Kumar has made it his life’s work to study the space within atoms. He pursues answers to life’s basic questions: Where did we come from? How are we put together? What happened right after the Big Bang?

      His quest for those answers led Kumar to be one of the first scientists to use Jefferson Lab when it began operating in the early 1990s. He was an assistant professor at Princeton University at the time, and he needed the high-end equipment available at Jefferson Lab to pursue his work. “Even a top place like Princeton does not have its own in-home, high-energy accelerator,” Kumar explains. “For the kind of research I wanted to do, Jefferson Lab was quite unique.” Jefferson Lab had the Continuous Electron Beam Accelerator Facility (CEBAF)—the first particle accelerator of its type in the United States.

      One Giant Microscope

      As Kumar describes it, the particle accelerator at Jefferson Lab works as a powerful microscope to help visualize atomic and subatomic particles. “There is a limit to what a conventional microscope can do because at a certain point, quantum physics plays a role,” says Kumar. “We are trying to image nuclei and things much, much smaller than a nucleus.”

      Specifically, Kumar is interested in better understanding neutral weak interactions, which are interactions between subatomic particles resulting from the weak force connecting particles. The weak force is one of the four known fundamental forces in the universe, which also include gravity, the strong force and the electromagnetic force. Exploring the weak force allows physicists a window into how the universe works. Kumar is involved in several experiments at Jefferson Lab that are measuring neutral weak interactions, including HAPPEx, PREX and MOLLER.

      A Collaboration of Scientific Researchers

      Kumar is one of many researchers from around the world who are reliant on the powerful equipment at Jefferson Lab as they pursue their own research into the nucleus. Yet, all of the scientists who use the lab’s facilities have one thing in common: their drive to understand. “We are continuously building on and refining our understanding of the forces among electrons and quarks, and exploring their consequences,” he says. “That’s what we all do.”

      The “all” Kumar refers to includes the 1,500-plus members of the Jefferson Lab Users Group, a quarter of whom are university professors from around the world. Kumar himself is a professor in the department of physics and astronomy at Stony Brook University. “Most things done in modern research are done collaboratively,” says Kumar, who became chair of the Jefferson Lab Users Group in June, 2017. “As Chair of the Users Group, my first job is to ensure that users have a voice at the lab and get the resources needed to pursue the world-leading nuclear physics research enabled by CEBAF,” Kumar says.

      Each experiment carried out at Jefferson Lab typically has between 50 to 100 researchers dedicated to it, many of whom are graduate and postdoctoral students looking to work alongside senior scientists from around the world, including leaders in their fields.

      With some of his experiments taking eight years or more to begin after the proposal has been approved by an international committee that meets at least annually at Jefferson Lab, there is plenty of time for Kumar and his collaborators to plan, study and prepare.

      On Sept. 27, 2017, researchers had the additional excitement of a 12 GeV Upgrade completion, shaping a new scientific program going forward. “The 12 GeV Upgrade has enabled new measurements probing the building blocks of matter and also testing the fundamental theory of the strong and weak forces that are not possible elsewhere worldwide,” Kumar explains. “Technological innovations required to carry out the upgrade and the new measurements will benefit many related areas in medical physics, cryogenics, electronics and superconducting radiofrequency technology.” Kumar expects the upgrade to lead to groundbreaking new results in nuclear physics.

      A Cross-discipline Education

      Along with his own preparation and study, Kumar spends much of his time mentoring young scientists. “A Ph.D. experimental nuclear physicist has to know quite a bit about many fields,” he explains. “One of the most important skills for a scientist is to be able to work with others who have their own skills. We train students well at Jefferson Lab. They tweak. They use screwdrivers, soldering irons, computers and software, among other things.”

      Why train young scientists in various cross-disciplines seemingly unrelated to nuclear physics? Because, according to Kumar, “Scientists need to be able to work with mechanical and electronics engineers and technicians and many others. Scientists need to be able to understand teammates’ disciplines, explain what needs to be built and identify the specifications” needed in order to enable them to have a successful experiment.

       

    Youtube videos

    The Jefferson Lab campus is located in southeastern Virginia amidst a vibrant and growing technology community with deep historical roots that date back to the founding of our nation. Staff members can live on or near the waterways of the Chesapeake Bay region or find peace in the deeply wooded coastal plain. You will have easy access to nearby beaches, mountains, and all major metropolitan centers along the United States east coast.

    To learn more about the region and its museums, wineries, parks, zoos and more, visit the Virginia tourism page, Virginia is for Lovers

    To learn more about life at Jefferson Lab, click here.

     

    We support our inventors! The lab provides resources to employees for the development of patented technology -- with over 180 awarded to date! Those looking to obtain patent coverage for their newly developed technologies and inventions while working at the lab are supported and mentored by technology experts, from its discovery to its applied commercialization, including opportunities for monetary awards and royalty sharing. Learn more about our patents and technologies here.

    • Jian-Ping Chen
      Jian-Ping Chen
      Senior Staff Scientist

      “Every time we solve problems, we contribute. It’s exciting times for new results and discoveries.”

    • Pashupati Dhakal
      Pashupati Dhakal
      Accelerator Operations

      "Not every day is the same day. Working in research and development, it’s not a one person job."

    • Holly Szumila-Vance
      Holly Szumila-Vance
      Staff Scientist

      "Today, we use a lot of those same teamwork traits [learned from the military] on a daily basis as we're all working toward similar goals here at the lab in better understanding nuclei!"

    • Welding Program Manager
      Jenord Alston
      Welding Program Manager

      "Everybody in the chain is working towards the same goal: to ensure that everything is built safe and to the code specifications"

    • Ashley Mitchell
      Ashley Mitchell
      SRF Chemistry Technician

      “Chemistry is the art of science and art; you’re manipulating and creating things. We have lots of different recipes to work with.”

    Jefferson Science Associates, LLC manages and operates the Thomas Jefferson National Accelerator Facility. Jefferson Science Associates/Jefferson Lab is an Equal Opportunity and Affirmative Action Employer and does not discriminate in hiring or employment on the basis of race, color, religion, ethnicity, sex, sexual orientation, gender identity, national origin, ancestry, age, disability, or veteran status or on any other basis prohibited by federal, state, or local law.

    If you need a reasonable accommodation for any part of the employment process, please send an e-mail to recruiting @jlab.org or call (757) 269-7100 between 8 am – 5 pm EST to provide the nature of your request.

    "Proud V3-Certified Company"

    A Proud V3-Certified Company
    JSA/Jefferson Lab values the skills, experience and expertise veterans can offer due to the myriad of experiences, skill sets and knowledge service members achieve during their years of service. The organization is committed to recruiting, hiring, training and retaining veterans, and its ongoing efforts has earned JSA/Jefferson Lab the Virginia Values Veterans (V3) certification, awarded by the Commonwealth of Virginia.

  • Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet..", comes from a line in section 1.10.32.

    PB Titie here blah blah

    Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock,